葡萄酒综合评价的数学模型建模.doc
《葡萄酒综合评价的数学模型建模.doc》由会员分享,可在线阅读,更多相关《葡萄酒综合评价的数学模型建模.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流葡萄酒综合评价的数学模型建模.精品文档.葡萄酒综合评价的数学模型 学生姓名:王磊(数应1002班) 指导教师:王惟摘 要:文章通过分析附件中的数据.借助spss软件,运用t检验法讨论了两组评酒员对葡萄酒评价结果的可信度.然后利用主成分分析法得出综合主成分值并对酿酒葡萄进行分级,并根据配对样本检验法和双变量相关性分析法研究酿酒葡萄与葡萄酒的理化指标之间的联系.最后用多元线性回归法分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,从而得出相关结论:相关性越强即说明线性关系越明显,表明对其质量的影响越大.关键词:主成分分析;t检验;多元线性回归;s
2、pss软件;双变量相关性分析;理化指标Mathematical Model of Comprehensive Evaluation of Wine Student: Wang Lei Instructor: Wang WeiAbstract: This article takes an analysis of the data in the attachment. With the help of spss software, we can use t-test to discuss the credibility of evaluation results of wine about two
3、 groups wine taster and use principal component analysis method to obtain the comprehensive principal component scores which can be used to get the classification of wine grapes. According to the paired samples test and bivartite correlation analysis method, we can study the contact of the physicoch
4、emical indexes between wine grapes and wine. Finally, by using the multivariate linear regression method to analyze the influence of physicochemical indexes of wine grapes and wine on wines quality. We can draw the related conclusion: the stronger correlation, the better obvious linear relationship,
5、 indicating effect on quality of wine more.Key words: principal component analysis; t- independent sample test; multiple linear regression; spss software; bivariate correlation analysis; physicochemical index physicochemical index physicochemical index目 录1 问题的提出 12 问题的分析 13 基本假设 24 符号说明 25 模型的建立与求解
6、25.1 问题一的模型建立与求解 2 5.1.1 分析红葡萄酒评价差异性 2 5.1.2 分析白葡萄酒评价差异性 3 5.1.3 分析评价结果可信度 5 5.2 问题二的模型建立与求解 6 5.3 问题三的模型建立与求解 8 5.4 问题四的模型建 145.4.1 红葡萄理化指标对葡萄酒质量的影响 14 5.4.2 红葡萄酒理化指标对葡萄酒质量的影响 156 模型的评价 167 模型的推广 16参考文献 171 问题的提出确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评.每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量.酿酒葡萄的好坏与所酿葡萄酒
7、的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量.附件一给出了某一年份一些葡萄酒的评价结果,附件二和附件三分别给出了该年份这些葡萄酒和酿酒葡萄的成分数据.尝试建立数学模型讨论下列问题:问题一:分析附件一中两组评酒员评价结果有无显著性差异,哪一组结果更可信?问题二:根据酿酒葡萄的理化指标和葡萄酒的质量对酿酒红葡萄进行分级.问题三:分析酿酒红葡萄与红葡萄酒的理化指标之间的联系.问题四:以酿酒红葡萄为例,分析酿酒红葡萄和红葡萄酒的理化指标对红葡萄酒质量的影响,并论证能否用红葡萄和葡萄酒的理化指标来评价红葡萄酒的质量?2 问题的分析 针对问题一,判断两组评酒员的评
8、价结果有无显著性差异和结果的可靠性比较,通过计算平均值和方差来观察.根据每一位评酒员的总分求和,再求平均值,得出红白葡萄酒的整体平均值,对两组评分进行t-双样本等方差检验.根据t检验结果来分析两组评酒员评分结果是否存在显著差异性,通过描述四组数据的置信区间和均值标准差来确定他们评价结果的可靠性.针对问题二,根据酿酒葡萄的理化指标和葡萄酒的质量,使用主成分分析的方法对这些酿酒葡萄进行分级.首先对原始数据进行标准化处理,计算出相关系数矩阵,通过计算出的特征值来选择数个主成分,通过spss软件求解出主成分,根据主成分来确定各酿酒葡萄的综合主成分分值,最后根据综合主成分值的高低对葡萄进行分级.针对问题
9、三,根据附件二中提供的酿酒红葡萄与红葡萄酒的理化指标数据,分析他们之间的联系.首先通过excel对数据进行处理,挑选出两者共有的理化指标,多次测量的求取其平均值作为参考数据,整理归纳之后,利用spss软件进行双变量相关性分析. 针对问题四,分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量.分析附件二中的红葡萄酒和红葡萄所有的一级理化指标,使用多元线性回归的方法对理化指标进行处理,相关性强即说明线性关系比较明显,对其质量的影响较大.3 基本假设(1).两组评酒员之间的分数是相对独立的,每个评酒员之间互不影响;(2).两组评酒员是随机分配的,两个
10、总体分布都服从正态分布;(3).用来检验的葡萄都是采摘的新鲜的葡萄,葡萄酒也没有受到污染;(4).假设评酒员的系统误差较小,忽略不计;(5).只考虑红葡萄酿成红葡萄酒,白葡萄酿成白葡萄酒,而不考虑多种葡萄混合酿成的葡萄酒;(6).假设题目中所给出的数据和其他内容都真实可信.4 符号说明 :表示第组红葡萄酒评酒员评分的平均(,); :表示第组白葡萄酒评酒员评分的平均(,); :各个酿酒红葡萄综合主成分得分(,); :用红葡萄酿成的红葡萄酒的质量; :表示酿酒红葡萄第种主成分的特征值(,); :酿酒红葡萄样品对各个主成分的得分.5 模型的建立与求解5.1 问题一的模型建立与求解5.1.1 分析红葡
11、萄酒评价差异性首先根据附件一中的数据,分析红葡萄酒的评价结果,利用excel分别计算出每组的10位评酒员对27种红葡萄酒样品的平均值,如表1所示.由表1计算可知, ,由此可见,第一组评酒员对红葡萄酒的评价略高.但是,仅凭平均值的差异不能完整地反映出这两组评价结果的差异性,所以根据表1中的数据,设显著性水平,置信度为,建立零假设:,运用spss软件进行独立样本t检验,检验结果如表2、表3所示.表1 红葡萄酒样品平均值酒样品1酒样品2酒样品3酒样品4酒样品5酒样品6酒样品7一组62.780.380.468.673.372.271.5二组68.17474.671.272.166.365.3酒样品8酒
12、样品9酒样品10酒样品11酒样品12酒样品13酒样品14一组72.381.574.270.153.974.673二组6678.268.861.668.368.872.6酒样品15酒样品16酒样品17酒样品18酒样品19酒样品20酒样品21一组58.774.979.359.978.678.677.1二组65.769.974.565.472.675.872.2酒样品22酒样品23酒样品24酒样品25酒样品26酒样品27一组77.285.67869.273.873二组71.677.171.568.27271.5 表2 组统计量样本N均值标准差均值的标准误均值12773.0567.34261.4131
13、22770.5153.97800.7656分析表2、表3可知,对两组评酒员的数据做方差齐性检验,得出的值为3.861,值为,由于值大于显著性水平,所以认为不能拒绝零假设,即两组数据的方差相等,再通过t检验的结果知双侧的概率值均大于显著性水平.综上所述,认为两组评酒员对红葡萄酒的评价结果无显著性差异.5.1.2 分析白葡萄酒评价差异性同上述解决方法一样,首先根据附件一中的数据,利用excel分别计算出每组的10位品酒员对28种白葡萄酒样品的平均值,如表4所示.由表4计算可知,由此可见,第二组品酒员对白葡萄酒的评价略高.同样,根据表4中的数据,设显著性水平,置信度为,建立零假设:,运用spss软件
14、进行独立样本t检验,检验结果如表5、表6所示.表3 独立样本检验方差方程的 Levene 检验均值方程的 t 检验FSig.tDfSig.(双侧)均值差值标准误差值差分的 95% 置信区间下限上限均值假设方差相等3.8610.0551.581520.1202.54071.6071-0.68425.7657假设方差不相等1.58140.0520.1222.54071.6071-0.70735.7888酒样品1酒样品2酒样品3酒样品4酒样品5酒样品6酒样品7一组8274.278.379.47168.477.5二组77.975.875.676.981.575.574.2酒样品8酒样品9酒样品10酒样
15、品11酒样品12酒样品13酒样品14一组71.472.974.372.363.365.972二组72.380.479.871.472.473.977.1酒样品15酒样品16酒样品17酒样品18酒样品19酒样品20酒样品21一组72.47478.873.172.277.876.4二组78.467.380.376.776.476.679.2酒样品22酒样品23酒样品24酒样品25酒样品26酒样品27酒样品28一组7175.973.377.181.474.881.3二组79.477.476.179.574.37779.6 表4 白葡萄酒样品平均值 表5 组统计量样本N均值标准差均值的标准误均值128
16、74.3714.45860.842622876.5323.17090.5993表6 独立样本检验方差方程的 Levene 检验均值方程的 t 检验FSig.tdfSig.(双侧)均值差值标准误差值差分的 95% 置信区间下限上限均值假设方差相等2.7460.103-2.090540.041-2.16071.0340-4.2337-0.0878假设方差不相等-2.09048.7490.042-2.16071.0340-4.2388-0.0826分析表5、表6可知,对两组品酒员的数据做方差齐性检验,得出的值为,值为,由于值大于显著性水平,所以认为不能拒绝零假设,即两样本的方差相等.再通过t检验可知
17、,对应第一行的t检验结果,t统计量的值为,对应的概率值为,故拒绝原假设,即两组品酒员对白葡萄酒样品的评价有显著性差异.5.1.3 分析评价结果可信度分析可信度,由于置信区间越大,置信度越小;置信区间越小,置信度越大.可根据置信区间的大小和样本的标准差来综合判断评价结果的可信度.在spss中对四组数据进行单个样本t检验,得到了样本统计量表和单个样本t检验的表格,如表7、表8所示.表7 单个样本统计量N均值标准差均值的标准误红一2773.0567.34261.4131红二2770.5153.97800.7656白一2874.374.4590.843白二2876.5323.17090.5993表8
18、单个样本检验检验值 = 0 TdfSig.(双侧)均值差值差分的 95% 置信区间下限上限红一51.699260.00073.055670.15175.960红二92.108260.00070.514868.94172.088白一88.265270.00074.37172.6476.10白二127.713270.00076.532175.30377.762由表7、表8可以明显看出,第一组评酒员对红、白葡萄酒的评价的置信区间略大于第二组评酒员对红白葡萄酒评价的置信区间,并且第一组品酒员对红、白葡萄酒评分的均值标准误差大于第二组品酒员对红、白葡萄酒评分的均值标准误差,所以认为第二组品酒员对红、白葡
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 葡萄酒 综合 评价 数学模型 建模
限制150内