飞机起落架故障分析设计.doc
《飞机起落架故障分析设计.doc》由会员分享,可在线阅读,更多相关《飞机起落架故障分析设计.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流飞机起落架故障分析设计.精品文档.西安航空职业技术学院毕 业 设 计(论 文)论文题目: 飞机起落架故障分析 所属系部: 航空维修工程系专 业: 航空机电设备维修西安航空职业技术学院制西安航空职业技术学院毕业设计(论文)任务书题目: 飞机起落架故障分析任务与要求: 对飞机结构检修中飞机烧伤事故进行分析研究,总结飞机烧伤的原理、特点、以及一些基本的维修方法。时间: 2012 年 10月03日 至 2012 年 11月24日 共 7 周所属系部: 航空维修工程系学生姓名: 陈勃兴 学 号: 105042-24专 业: 航空机电设备维修指导单位或教
2、研室: 西安航空职业技术学院指导教师: 程 军 职 称: 机 械 师 西安航空职业技术学院制2012年10月 08日毕业设计(论文)进度计划表日 期工 作 内 容执 行 情 况指导教师签 字10月3日至10月9日根据指导老师的要求以及自己几年来的所学,并在图书馆查阅大量的相关资料基础上,确定出几个论文的题目10月10日至10月16向指导老师汇报前段准备情况,最后确定的论文题目,并着手整理相关资料10月17日至10月23日根据整理的相关资料,初步建立起自己论文的基本框架,并和老师讨论是否合适,修改完善10月24至10月30日结合自己所学,对所掌握的资料进行合理的筛选后,初步形成论文的初稿,并发送
3、给指导老师,接受老师的指导11月1日至11月6日就指导老师对初稿指出的相关问题,尤其是论文格式问题,进行及时修改,尽量做到认真,以保证论文的理论正确性,并将修改后的电子稿再次发给老师11月7日至11月14日就指导老师再次提出的相关问题进行修改,并经过多次讨论,形成满足学校要求的论文11月14日至11月21日进一步完善论文,打印,提交,等待论文答辩教师对进度计划实施情况总评 签名 年 月 日 本表作评定学生平时成绩的依据之一。飞机起落架故障分析【摘要】起落架是飞机的重要组成部分,飞机的停放、起飞着陆主要是由起落架来完成的。所以起落架的工作性能直接影响了飞机的安全性和机动性。飞机起落架故障很多,本
4、文主要针对歼七和歼八飞机的一些故障加以分析。主要阐述了歼八飞机主起落架机轮半轴裂纹故障分析和歼七飞机起落架收放系统典型故障分析。关键词: 起落架 机轮半轴 裂纹 法兰盘 自动收起 油路堵死 电液换向阀Abstract:The landing gear is the important part of a plane, aircraft taking off and landing Park, mainly by the landing gear to complete. So the landing gear performance has a direct impact on the air
5、craft safety and mobility.Aircraft landing gear failures, this paper f 7 and fighter aircraft fault analysis. Mainly elaborated the J-8 aircraft main landing gear axle crack fault analysis and f 7 landing gear system of typical fault analysis.Key words: landing gear wheel axle crack flanges are auto
6、matically folded circuit blocked electro-hydraulic reversing valve目 录1.歼8飞机主起落架机轮半轴裂纹故障分析61.1引论61.1.1主起落架结构设计概况61.1.2 主起落架机轮半轴故障概况71.2主起落架机轮半轴失效分析81.2.1主起落架机轮半轴受力分析81.2.2 机轮半轴裂纹检测及断口分析91.3 主起落架机轮半轴疲劳试验结果111.3.1 机轮半轴疲劳试验破坏部位111.3.2 试验结果与使用情况差异分析121.3.3外场飞机使用特点分析121.3.4 主起落架机轮半轴失效分析结论131.4主起落架机轮半轴结构设计
7、改进131.4.1半轴结构设计改进原则131.4.2半轴结构细节设计改进131.5 经验教训141.5.1 设计载荷谱、变形预测与实际使用情况相符141.5.2完善细节抗疲劳设计和强化工艺是提高结构抗疲劳开裂的重要技术途径141.5.3地面疲劳试验验证刚度模拟要真实141.5.4制定合理的检修周期是确保使用安全的重要措施142歼七飞机起落架收放系统典型故障分析152.1歼七飞机前起落架自动收起的故障研究152.1.1起落架收放控制原理分析152.1.2起落架自动收起原因分析162.2.1 电液换向阀性能不良162.3 故障验证182.4维修对策182.4.1改进起落架收放管路的设计192.4.
8、2提高产品质量,加强安装前的检查19结束语20谢 辞21参考文献221.歼8飞机主起落架机轮半轴裂纹故障分析1.1引论1.1.1主起落架结构设计概况歼8飞机起落架为前三点式布局,由1个前起落架、2个主起落架组成,其中主起落架安装左右机翼上。飞机停放时,起落架起着支撑作用;飞机地面滑行时、起飞着陆时,起落架起着缓冲作用,同时将地面载荷传迹到机身上。主起落架收起后,支柱收在机翼内,而机轮则绕活塞杆下部的转轴转动7723收入机身两侧。图11-1主起落架为支柱式结构,由缓冲支柱、带刹车机轮、收放作动筒、转轮机构、上位锁、终点开关和护板等组成,如图111所示。其中缓冲支柱主要是由外筒、活塞杆、机轮半轴、
9、扭力臂和装于支柱内部的柱塞式缓冲器所组成。由锻铝合金制造的带刹车的机轮即安装在机轮半轴上。轮轴的一端制有接头,与活塞杆下端耳片铰接,并制有连接转轮机构的耳片。轮轴上还制有千斤顶顶窝和安装传递撞击载荷的止动螺栓的轴孔。 早期歼8飞机的支柱外筒、活塞杆、轮轴等主要受力件均采用超高强度钢GC4(40CrMnSiMoVA)模锻件制造,并进行喷丸强化及直接涂漆表面处理。在后续机型中,支柱外筒、活塞杆、轮轴等主要受力件采用了更为先进的超高强度钢300M(40CrNi2Si2MoVA)模锻件制造,并进行喷丸强化及镀铬钛、涂漆的表面处理和表面防护。 GC4钢是超高强度钢,具有良好的工艺性能和综合力学性能,对缺
10、口和氢脆有较高的敏感性。热压力加工成形性能良好,但对过热较敏感,不允许采用气焊和镀锌工艺。 300M钢也是一种中碳低合金超高强度钢,具有高淬透性,淬火加低温回火后强度达1960MPa,兼有优良的横向塑性、断裂韧度、抗疲劳性能,但对缺口和氢脆也有较高的敏感性,一般不推荐焊接。无论是GC4钢还是300M钢,由于对应力集中的敏感性,所以在零件设计时,尽可能选用大的截面过渡半径,并用选用较小的粗糙度值,保持零件表面光滑。此外,在生产和使用中要严格控制热处理、表面处理等工艺过程,防止产生氢脆。对于GC4钢制造的机轮半轴,早期机型机轮半轴寿命为3000多个起落,后续机型机轮半轴寿命4000多个起落,并规定
11、在弟二次大修时更换机轮半轴,载荷谱中没有考虑腐蚀因素。1.1.2 主起落架机轮半轴故障概况歼8后续机型某架飞机在夜航第二个起落着陆过程中,当距跑道端头550m时,右侧主机轮及刹车组件脱离飞机,右主起落架机轮半轴折断、支柱着地,活塞杆连接机轮半轴耳片处和机轮半轴下表面磨损约15mm,飞机其他部位无损伤。该右主起落架已使用了909个起落。机轮半轴从法兰盘内外两侧断为3截,法兰盘外侧轮轴断开不规则,呈45角;法兰盘内侧轮轴断口截面比较平整垂直.在歼8飞机大修时,在主起落架机轮半轴上连续发现裂纹,这些机轮半轴起落次数约在1400个起落左右。在普查中陆续发现,约有23 的飞机机轮半轴出现裂纹,其中近61
12、起落次数在1300起落以上,近20在10001300起落之间,近19在1000起落以下。裂纹发生的部位在机轮半轴法兰盘外圆根部倒角变截面处,具体在安装止动螺钉的凹面台阶背面法兰盘弟1孔附近的变截面处角度的范围内,见图113。图11-3裂纹方向均沿着变截面的交界线,裂纹长度最短的为3mm,最长的为80mm。在出现裂纹的这些机轮半轴上未发现锈蚀情况。1.2主起落架机轮半轴失效分析1.2.1主起落架机轮半轴受力分析机轮半轴在起落架上的安装及其结构如图114所示。飞机在起飞、着陆、滑行、刹车和转弯等情况下,所有地面传来的载荷及飞机着陆接地时产生的撞击能量均通过机轮半轴传到活塞杆上。应力分析结果表明,歼
13、8机种主起落架机轮半轴的应力较高图11-4机轮刹车装置借助9个螺栓将刹车壳体安装在轮轴的法兰盘上,法兰盘R2圆角处与机轮刹车壳体有配合关系,刹车壳体该处倒角尺寸为2.5mm45。机轮半轴的法兰盘主要承受飞机刹车时产生的扭矩,裂纹所在处的第1螺栓孔在刹车过程中受力较大,并且在R2圆角处的应力集中加大了剪切作用(图11-5);图11-5另外飞机着陆时机轮着地瞬间,地面载荷分别作用机轮垂直向上的载荷和逆航向载荷,二者的合力在扇形区内作用给半轴,对其根部形成剪切和弯曲作用。上述3种载荷传至半轴根部,必然会产生较大的工作应力。再考虑R2圆角多应力集中因素,其应力水平还将大幅度提高。正是作用在R2圆角处的
14、剪应力和弯曲正应力的共同循环作用,结果在该处产生疲劳裂纹。1.2.2 机轮半轴裂纹检测及断口分析1 外场机轮半轴断裂检查目视观察,机轮断成3部分,法兰盘内侧轮轴断口比较平直,沿法兰盘R2处有近一周的封闭裂纹。封闭裂纹断口为疲劳断口形貌特征,疲劳源为线性多源(周向沿加工痕迹长约25mm)。源区位于轮轴法兰盘第一安装孔附近的内侧下方R2处,源区局部有擦伤,源区附近未发现明显的冶金缺陷。疲劳裂纹从左下方沿法兰盘圆周方向逆时针扩展了300余度后,分成两叉,一叉沿法兰盘外侧轮轴快速扩展,另一叉沿法兰盘内侧轮轴快速扩展。断口上疲劳弧线、放射棱线明显,粗大的放射线指示出疲劳扩展方向,端口上有多条明显的疲劳弧
15、线。在扫描电镜下观察,在源区附近和扩展区均可见到韧窝带或局部疲劳条带等疲劳微观特征,大部分区域为韧窝形貌。基于上述观察结果,初步判断轮轴断裂属于高应力低调疲劳断裂。轮轴由GC4钢模锻制造加工。在法兰盘部位沿模锻件纵向切取试样进行测评,平均强度值符合设计要求(19010Kgf),且偏于上线,见表112。表112 显微硬度及换算值序号HVO.2HRC(换算值)强度值(换算值)/MPa图样要求值/MPa1562531928186210025625319283577542004455752.81921平均值564.553.21940注:表中HV指维氏硬度,0.2表示测量冲击压力为0.2Kgf。对照国标
16、GB 10561(钢中非金属夹杂物显微评定方法),检测样品的硫化物等级为0.5级,氧化物夹杂等级为1级,夹杂物总和为1.5级,符合技术要求。经检测,样品晶粒度等级为7.5级,符合技术要求。用4的硝酸酒精溶液侵蚀样品,在400倍显微镜下观察组织,金相组织为正常的淬火、回火组织。化学成分检测结果见表113,其中碳含量偏于上线。 表113 化学成分分析结果 wt类别CMnSiCrMoVSPAl测量值0.420.981.311.360.530.080.0020.0210.03标准值(YB12091983)0.360.420.801.201.201.601.201.500.450.600.070.120
17、.0250.0250.10经检测,法兰盘腹板与机轮表面粗糙度、安装孔直径、法兰盘厚度、过渡圆角等均符合设计要求。由此可知,零件材质、尺寸符合设计要求;源区有磨损,附近未冶金缺陷和外来损伤,裂纹较平直,有氧化特征,为疲劳断口形貌。疲劳源特征为线性多源,裂纹始于轮轴法兰盘第一安装孔附近的内侧下方R2处,属于高应力低周疲劳断裂 。2大修厂机轮半轴裂纹检查经外观检查,发现长约45mm、最深处约2mm的裂纹,为穿透壁厚,裂纹位置同图112。断口比较平直,有氧化特征,为多源疲劳断口形貌。断口上有多条明显的疲劳弧线,并有较粗大的放射棱线,指向疲劳裂纹的扩展方向。疲劳源特征为线性多源,源区位于轮轴法兰盘第一安
18、装孔附近的内侧下方R2处。源区局部有磨损,源区附近未见冶金缺陷。经低倍检查,裂纹位于零件法兰盘内侧轮轴前端第一安装孔R2尺寸根部,沿法兰盘内侧轮轴R2处延伸。裂纹具有台阶状线源疲劳开裂特征。裂纹处未见划伤、碰伤以及明显的加工痕迹。在扫描电子显微镜下观察断口,发现在源区附近及扩展区均存在韧窝带或局部疲劳条带等疲劳微观特征,其他大部分区域为韧窝结构,断口上疲劳部分有氧化特征。用3的硝酸酒精溶液浸蚀金相试样,在400倍显微镜下观察组织,基体金相组织为正常的淬火、回火组织。裂纹较平直,开口度约为5um,从裂纹形貌上看具有疲劳开裂的特征。 在法兰盘部位沿模锻件纵向切取试样测试,平均强度值偏上线(显微硬度
19、值换算后与实际强度值有一定的偏差),符合设计要求。边缘显微硬度测试结果表明,零件边缘脱碳深度符合设计要求。显微硬度测试结果见表114. 表114 显微硬度测试结果项目距边缘25um(HKO.5)距边缘50um(HKO.5)距边缘75um(HKO.5)中心(HKO.5)14965405565692499543553566349754255757144955435525685493541554570平均值496541.9554.45611.8化学成分测试结果符合零件材质要求,见表115。 表115化学成分分析结果类别CMnSiCrMoVSPAl测量值0.400.991.331.350.500.09
20、0.0030.0020.05标准值(YB12091983)0.360.420.801.201.201.601.201.500.450.600.070.120.0250.0250.10经检测,法兰盘腹板与机轮表面粗糙度、安装孔直径、法兰盘厚度、过渡圆角等均符合设计要求。由此可知,零件材质、尺寸符合设计要求;源区有磨损,附近未见冶金缺陷和外来损伤,裂纹较平直,有氧化特征,为疲劳断口形貌。疲劳源特征为线性多源,裂纹始于轮轴法兰盘第一安装孔附近的内侧下方R2处,属于高应力低周疲劳断裂,同外场断裂件检查结果。1.3 主起落架机轮半轴疲劳试验结果1.3.1 机轮半轴疲劳试验破坏部位歼8后续机型主起落架疲劳
21、试验时,机轮半轴在20000多次起落时发生断裂,折合使用寿命为4000多个起落。断裂位置是根部销钉孔处,如图116所示。从中可以看出,与外场飞机发现裂纹的部位完全不同。图11-61.3.2 试验结果与使用情况差异分析机轮半轴在疲劳试验和外场使用中所暴露的破坏部位、寿命存在较大差别,主要因为:(1)机轮半轴在疲劳试验模拟与飞机真实机轮的刚度存在差别疲劳试验用假机轮与真实机轮不同。前者采用钢材料制造,由焊接拼合制成,其刚度较大;而后者使用锻铝、钢等多种材料制成,轮毂上套装轮胎,其刚度比疲劳试验所用的假机轮刚度小的多。因此,在实际使用中,由于真实机轮刚度较小,容易产生变形,会使侧向载荷的能力较弱。而
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 飞机 起落架 故障 分析 设计
限制150内