阿尔金二长花岗岩LAICPMS锆石定年Hf同位素特征本科.doc
《阿尔金二长花岗岩LAICPMS锆石定年Hf同位素特征本科.doc》由会员分享,可在线阅读,更多相关《阿尔金二长花岗岩LAICPMS锆石定年Hf同位素特征本科.doc(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流阿尔金二长花岗岩LAICPMS锆石定年Hf同位素特征本科.精品文档.摘要地球化学显示,阿尔金南缘江尕勒萨依二长花岗岩, SiO2含量高(73.37 % 74.02%, 平均为73.69%), TiO2含量低(0.11 % 0.16%, 平均为0.13%), CaO含量低(0.85 % 0.94%, 平均为0.91%), Na2O含量为3.04 % 3.65%, 平均为3.32%, K2O含量为5.22 % 5.69%, 平均为5.43%, 全碱含量高(K2O+Na2O=8.42 9.01, 平均为8.76), K2O含量相对Na2O高, K2
2、O/Na2O=1.46 1.77, 平均为1.63, 在SiO2-K2O+Na2O图解上所有样品落入花岗岩区域, 在SiO2-K2O图解上落入高钾钙碱性-钾玄岩系列, 在K2O-Na2O图上落入高钾质区域具有富铝的特点, Al2O3含量为13.78 % 13.98%, 平均为13.9%, 铝包和指数A/CNK=1.03 1.11, 平均为1.06, 为过铝质系列岩石。反映该花岗岩的源岩主要来自于壳源物质的重熔,其来源也相对单一。江尕勒萨依二长花岗岩稀土总量为中等(REE = 180.89 ppm 260.17 ppm),具有高度富集轻稀土而亏损重稀土的特征, 轻重稀土比值高(LR/HR=9.0
3、1 22.14, 平均为20.59), (La/Yb)N = 14.18 89.35, 平均为74.68, 样品均出现明显的负Eu异常(Eu =0.16 0.36, 平均为0.25)从微量元素对原始地幔标准化蛛网图上可以看出, 所有花岗岩样品富集KRbTh和U等大离子亲石元素(LILEs)与轻稀土元素(LaCeNd等), 亏损NbTaP和Ti等高场强元素(HFSEs), 具有明显的Sr与Ba负异常, ZrHf无明显分异, SrBa亏损与负的Eu异常, 共同表明部分熔融源区残留体中存在斜长石或在岩浆演化过程中斜长石发生分离结晶该地区花岗岩样品中的锆石自形程度为自形晶, 呈长柱状从CL图像可以看出
4、, 锆石显示清晰的岩浆振荡环带。锆石CL图像特征表明所有样品中的锆石主体为岩浆成因, 可以代表花岗岩的形成时代。利用LA-ICP-MS方法对该区花岗质岩石进行了锆石U-Pb定年分析。大部分测点位于谐和线上及附近,江尕勒萨依二长花岗岩的206Pb/238U年龄介于449Ma 458Ma, 加权平均值为453.12.1Ma,锆石U-Pb定年结果表明江尕勒萨依地区花岗岩的形成年龄与超高压岩石的退变质年龄一致,都是折返背景下由地壳物质重熔形成的。关键字:阿尔金;二长花岗岩;LA-ICP-MS锆石定年;Hf同位素特征;碰撞后抬升AbstractAltun mountain is located in t
5、he northern margin of the Qinghai Tibet Plateau, the east Qilian Mountains, Kunlun Mountains in the west, is located between the Tarim plate and the Qaidam microplate, occupies a prominent important tectonic position, the orogenic process time limit to explore contrast of the adjacent geological uni
6、t of the connection and the Western tectonic evolution has important geological significance. In this paper, the research on the southern Altyn janggalsay River granite field geology, petrology, geochemistry and geochronology to determine the spatial distribution characteristics of the study area th
7、e early Paleozoic granitoids, magmatism and petrogenesis, combined with regional high-pressure and ultrahigh pressure metamorphism and research results, to explore the South Altun south margin of janggalsay River granite rocks of diagenetic dynamic background. Discovered by the Altyn janggalsay Rive
8、r granite rock is studied, the main mineral composition of potassium feldspar, plagioclase, quartz and biotite.Which potassium feldspar are euhedral to subhedral crystal, mainly of perthite and microcline content is 30% 40%, the content of plagioclase between 20% 30%, quartz content is about 30%, bi
9、otite content of about 15%, accessory minerals mainly zircon, titanite, apatite and magnetite, High content of SiO2 (7.337% 74.02%, with an average of 73.69%), TiO2 content (0.11% 0.16%, with an average of 0.13%) low, the CaO content (0.85% 0.94%, with an average of 0.91%) low, Na2O content was 3.04
10、% 3.65%, with an average of 3.32%, K2O content was 5.22% 5.69%, with an average of 5.43%, high total alkali content (K2O+Na2O=8.42 9.01, average 8.76), a relatively high Na2O K2O content, K2O/Na2O=1.46 177, with an average of 1.63. In SiO2-K2O+Na2O diagram all samples fall into the granite area. In
11、SiO2-K2O diagram into high-k calc alkaline potassium shoshonite series, in K2O-Na2O map into high potassic zone has characteristics of rich aluminum, Al2O3 content for 13.78% 13.98%, with an average of 13.9%, aluminum clad and index A/CNK=1.03 1.11 in the, with an average of 1.06, aluminous rocks.Ja
12、nggalsay river is the second longest zircon 176Hf / 177Hf varies in the range of 0.282412 0.282456, with a mean value of 0.282440, epsilon Hf (T) varied from 3.1 1.5, and the mean value is 2.1, the two stage model ages for 1391Ma 1478Ma, average for 1425Ma. Reflect thesource rocks of thegraniteis ma
13、inly fromcrust sourcematerialremelting,its sourceis relativelysingle.Medium (REE = 180.89 ppm janggalsay River monzonitic granite REE 260.17 parts per million (PPM) of is highly enriched in light rare earth and loss characteristics of heavy rare earth, high ratio between LREE and hree (LR/HR=9.01 22
14、.14, with an average of 20.59), (LA / Yb) n = 14.18 89.35 average for 74.68, samples were found significant negative Eu anomalies (8eu =0.16 0.36, average for 0.25). uhedral plagioclase residual loss from trace elements of primitive mantle normalized spider diagram can be seen, all granite samples a
15、re enriched in K, Rb, Th and U and other large ion lithophile elements (LILEs) and light rare earth elements (La, Ce, Nd) and depleted in Nb, Ta, P and Ti and high field strength elements (HFSEs), with obvious Sr and Ba negative anomalies, Zr, Hf without obvious differentiation, Sr, Ba and negative
16、Eu anomalies show that the partial melting of the source region of the body in the presence of plagioclase or in the magma evolution in the process of fractional crystallization. The area of granite samples of zircon degree as euhedral crystal, a long column shape, length of 100 150 mum, length and
17、width ratio is 2: 1 3: 1. As can be seenfrom the CLimages,showingclearzirconmagmatic oscillatory zoning.A large number of studies show that (Hoskin and Ireland, 2000), different genesis of zircon with different Th / U ratios: magmatic zircon of the Th / U ratio is large (typically 0.4), metamorphic
18、zircon of the Th /Uratio is small ( 0.1). Jiang Ga samples of Lesayi zircon Th/U=0.23 0.87, flat were to 0.47 and zircon CL images and Th / U values indicate that all the samples in the main zircon can granitoids represent the formation age of magmatic origin.In the areaof granitic rocksweredetermin
19、edby LA-ICP-MSzircon U-Pbanalysismethod. Most of the measuring point is located in the harmonic line and near, the janggalsay River monzogranite 206Pb / 238U ages 449Ma 458Ma, weighted average value 45.31 + 2.1Ma, zircon U-Pb fixed annual results indicates that the janggalsay river area granite form
20、ation age and super high-pressure rocks back metamorphic age, are formed by crustal remelting reentrant background.Key words: Arkin;twogranite;zircon LA-ICP-MSdating;Hf isotope;post collisionuplift目 录1绪论11.1造山带花岗岩形成的构造环境11.2花岗岩成因分类研究进展31.3花岗岩锆石学研究进展71.4南阿尔金高压-超高压变质带中花岗岩的研究现状91.5 问题提出121.6 研究内容及研究意义1
21、32 区域地质背景152.1 阿尔金高压-超高压变质带变质概况152.2阿尔金高压-超高压变质带岩浆岩概况172.3 早古生代沉积地层243 分析方法253.1主量元素253.2 微量元素253.3锆石内部结构分析263.4锆石UPb 年代学264 岩相学特征284.1岩相学特征285地球化学特征295.1主量元素特征295.2 稀土及微量元素特征326 定年结果356.1锆石CL图像特征356.2 LA-ICP-MS U-Pb定年结果367 讨论与结论387.1 源岩性质387.2年代学及地球动力学背景407.3 结论41致 谢42参考文献431绪论1.1造山带花岗岩形成的构造环境花岗岩是造
22、山带重要的组成部分之一, 其与造山带形成及演化有密切的成因关系(Brown, 1994), 也与多种矿产资源形成有密切联系(肖庆辉等, 2001)。花岗岩样品容易获得, 主、微量元素测试方法成熟且精度很高; 花岗岩的放射性同位素(如Sr-Nd-Pb-Hf等)的组成特征, 能反映出其源区的性质地质时代和物质组成(Depaolo et al., 1991); 此外, 花岗岩精确定年在确定造山带构造演化过程的时限学方面有突出优势。因此, 花岗岩研究对于探讨造山带深部物质循环、造山带构造动力学过程以及地壳形成和增生机制等科学问题具有十分重要的意义(Gao et al., 2004, 2008; Wil
23、lbold and Stracke, 2010; 吴福元等, 2007a; 张旗等, 2006a, 2006b)。在近三十多年里, 花岗岩的研究经历了三个主要的里程碑(杨经绥等, 2009):第一个是Chappell和White在1974年以岩浆物质的来源为依据, 将花岗岩划分为S型和I型(Chappell and White, 1974), 在花岗岩研究领域掀起了一股研究热潮; 第二个花岗岩研究的里程碑是Pitcher于1979年将花岗岩形成与其构造环境相联系, 提出花岗岩的构造环境分类(Pitcher, 1979), 而后又作了进一步的补充(Pitcher, 1983); 第三个是Phin
24、ney等一些美国固体地球科学家在1989年提出了一个跨世纪的大陆动力学计划, 将壳幔作用引入花岗岩的形成机制, 这是花岗岩研究第三个里程碑开始的标志(王德滋, 2004; 王德滋与沈渭洲, 2003; 王德滋与舒良树, 2007; 杨经绥等, 2006, 2009)。现代花岗岩的成因研究已不是简单的大陆边缘板块俯冲模式, 也不再停留在地壳重熔的水平上, 而是向更高级区域变质的下地壳拆沉重熔的方向发展(董申保与田伟, 2007), 因此, 形成了幔源岩浆作用系列和壳源岩浆作用系列与大地构造中底垫、俯冲和拆沉作用的理论(Kay et al., 1992; Kay and Mahlburg, 199
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 阿尔金二长 花岗岩 LAICPMS 锆石定年 Hf 同位素 特征 本科
限制150内