高考数学椭圆讲练.doc
《高考数学椭圆讲练.doc》由会员分享,可在线阅读,更多相关《高考数学椭圆讲练.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流高考数学椭圆讲练.精品文档.椭 圆(一)椭圆及其标准方程1. 椭圆的定义:椭圆的定义中,平面内动点与两定点、的距离的和大于|这个条件不可忽视.若这个距离之和小于|,则这样的点不存在;若距离之和等于|,则动点的轨迹是线段.2.椭圆的标准方程:(0),(0).3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果项的分母大于项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上.4.求椭圆的标准方程的方法: 正确判断焦点的位置; 设出标准方程后,运用待定系数法求解.(二)椭圆的简单几何性质1. 椭圆的几何性质:设椭圆方程为(0). 范围:
2、 -axa,-bxb,所以椭圆位于直线x=和y=所围成的矩形里. 对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心. 顶点:有四个(-a,0)、(a,0)(0,-b)、(0,b).线段、分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点. 离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率.它的值表示椭圆的扁平程度.0e1.e越接近于1时,椭圆越扁;反之,e越接近于0时,椭圆就越接近于圆. 2.椭圆的第二定义 定义:平面内动点M与一个顶点的距离和它到一条定直线的距离的比是常
3、数(e1时,这个动点的轨迹是椭圆. 准线:根据椭圆的对称性,(0)的准线有两条,它们的方程为.对于椭圆(0)的准线方程,只要把x换成y就可以了,即.3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径. 设(-c,0),(c,0)分别为椭圆(0)的左、右两焦点,M(x,y)是椭圆上任一点,则两条焦半径长分别为,.椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a、b、c、e中有=+、两个关系,因此确定椭圆的标准方程只需两个独立条件.4.椭圆的参数方程 椭圆(0)的参数方程为(为参数). 说明: 这里参数叫做椭圆的离心角.椭圆上点P的离心角与直线OP的倾斜角不
4、同:; 椭圆的参数方程可以由方程与三角恒等式相比较而得到,所以椭圆的参数方程的实质是三角代换. 椭圆的参数方程是.5.椭圆的的内外部(1)点在椭圆的内部.(2)点在椭圆的外部.6. 椭圆的切线方程 (1)椭圆上一点处的切线方程是. (2)过椭圆外一点所引两条切线的切点弦方程是.(3)椭圆与直线相切的条件是7.直线与椭圆相交的弦长公式 若斜率为k的直线被圆锥曲线所截得的弦为AB, A、B两点分别为A(x1,y1)、B(x2,y2),则弦长 ,这里体现了解析几何“设而不求”的解题思想;高考题型解析(1)第一定义把椭圆从圆中分离椭圆从圆(压缩)变形而来,从而使得椭圆与圆相关而又相异. 它从圆中带来了
5、中心和定长,但又产生了2个新的定点焦点. 准确、完整地掌握椭圆的定义,是学好椭圆、并进而学好圆锥曲线理论的基础.【例1】 若点M到两定点F1(0,-1),F2(0,1)的距离之和为2,则点M的轨迹是 ( ).椭圆 .直线 .线段 .线段的中垂线.【解析】注意到且故点M只能在线段上运动,即点M的轨迹就是线段,选C.【评注】椭圆的定义中有一个隐含条件,那就是动点到两定点的距离之和必须大于两定点间的距离.忽视这一点,就会错误地选A.(2)勾股数组椭圆方程的几何特征椭圆的长、短半轴a、b和半焦距c,满足.在a、b、c三个参数中,只要已知或求出其中的任意两个,便可以求出第3个,继而写出椭圆方程和它的一切
6、特征数值.椭圆方程的标准式有明显的几何特征,这个几何特征就反映在这个勾股数组上. 所谓解椭圆说到底是解这个勾股数组.【例2】已知圆,圆内一定点(3,0),圆过点且与圆内切,求圆心的轨迹方程. 【解析】如图,设两圆内切于C,动点P(x,y),则A、P、C共线. 连AC、PB,为定长,而A(-3,0),B(3,0)为定点,圆心的轨迹是椭圆.且.所求轨迹方程为:(3)第二定义椭圆的个性向圆锥曲线共性加盟如果说椭圆第一定义的主要功能是导出了椭圆的方程,那么椭圆的第二定义则给椭圆及其方程给出了深刻的解释.根据这个解释,我们可以方便地解决许多关于椭圆的疑难问题.【例3】已知椭圆,能否在此椭圆位于y轴左侧部
7、分上找一点P,使它到左准线的距离是它到两焦点F1,F2距离的比例中项.【解析】由椭圆方程知:.椭圆的左准线为:.设存在椭圆上一点P(x,y)(x0,取,选D.【评注】直线与曲线相切的解析意义是相应的一元二次方程有相等二实根,因而可转化为其判别式为零处理;同理,直线与曲线相交要求相应的判别式大于零,相离则要求这个判别式小于零. (2)导数法把方程与函数链接由于解析法往往牵涉到比较繁杂的运算,所以人们在解题中研究出了许多既能减少运算,又能达到解题目的的好方法,导数法就是最为明显的一种.【例5】求证:过椭圆上一点的切线方程为:.【证明】(导数法)对方程两边取导数:.则切线方程为:.再化简即得:.这个
8、切线方程的实际意义很大.在有关运算中直接引用这个公式是十分省事的.(3)几何法为解析法寻根朔源减少解析计算的又一个重要手段,是在解题中充分运用平面几何知识.【例6】(07.湖南文科.9题)设分别是椭圆()的左、右焦点,是其右准线上纵坐标为(为半焦距)的点,且,则椭圆的离心率是( )A B C D【解析】如图有,设右准线交x轴于H,选D.【例7】已知椭圆和圆总有公共点,则实数的取值范围是 ( )【解析】如右图椭圆的中心在原点,且长、短半轴分别为a=2,b=1;圆的圆心为C(a,0)且半径R=1.显然,当圆C从椭圆左边与之相切右移到椭圆右边与之相切时都有公共点.此时圆心的横坐标由-3增加到3,故a
9、,选C.设P是椭圆1上一点,M、N分别是两圆:(x2)2y21和(x2)2y21上的点,则|PM|PN|的最小值、最大值分别为()A4,8 B2,6C6,8 D8,12在解析几何解体中引入平面几何知识包含两个重要方面,一是恰当地运用平面几何知识及其推理功能,二是利用图形变换去进行数量的分析与计算.(4)转移法将生疏向熟知化归做数学题如果题题都从最原始的地方起步,显然是劳神费力且违反数学原则的.不失时机地运用前此运算成果就成为数学思想的本质特点.而转移法正是这一思想的具体体现.【例8】(06.全国一卷.20题)在平面直角坐标系中,有一个以和为焦点,离心率为的椭圆.设椭圆在第一象限的部分为曲线C,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 椭圆
限制150内