1992年全国卷高考文科数学真题及答案.doc
《1992年全国卷高考文科数学真题及答案.doc》由会员分享,可在线阅读,更多相关《1992年全国卷高考文科数学真题及答案.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1992年全国卷高考文科数学真题及答案一、选择题(共18小题,每小题3分,满分54分)1(3分) 的值是()AB1CD22(3分)已知椭圆 上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为()A9B7C5D33(3分)如果函数y=sin(x)cos(x)的最小正周期是4,那么常数为()A4B2CD4(3分)在( )8的二项展开式中,常数项等于()AB7C7D 5(3分)已知轴截面是正方形的圆柱的高与球的直径相等,则圆柱的全面积与球的表面积的比是()A6:5B5:4C4:3D3:26(3分)图中曲线是幂函数y=xn在第一象限的图象已知n取2, 四个值,则相应于曲线c1、c2、c3、c4的
2、n依次为() A2, , ,2B2, , ,2C ,2,2, D2, ,2, 7(3分)若loga2logb20,则()A0ab1B0ba1Cab1Dba18(3分)原点关于直线8x+6y=25的对称点坐标为()A( )B( )C(3,4)D(4,3)9(3分)在四棱锥的四个侧面中,直角三角形最多可有()A1个B2个C3个D4个10(3分)圆心在抛物线y2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是()Ax2+y2x2y =0Bx2+y2+x2y+1=0Cx2+y2x2y+1=0Dx2+y2x2y+ =011(3分)在0,2上满足sinx 的x的取值范围是()ABCD12(3分)已
3、知直线l1和l2的夹角平分线为y=x,如果l1的方程是ax+by+c=0,那么直线l2的方程为()Abx+ay+c=0Baxby+c=0Cbx+ayc=0Dbxay+c=013(3分)如果,( ,)且tancot,那么必有()ABC+ D+ 14(3分)在棱长为1的正方体ABCDA1B1C1D1中,M和N分别为A1B1和BB1的中点,那么直线AM与CN所成角的余弦值是()ABCD15(3分)已知复数z的模为2,则|zi|的最大值为()A1B2CD316(3分)函数y= 的反函数()A是奇函数,它在(0,+)上是减函数B是偶函数,它在(0,+)上是减函数C是奇函数,它在(0,+)上是增函数D是偶
4、函数,它在(0,+)上是增函数17(3分)如果函数f(x)=x2+bx+c对任意实数t都有f(2+t)=f(2t),那么()Af(2)f(1)f(4)Bf(1)f(2)f(4)Cf(2)f(4)f(1)Df(4)f(2)f(1)18(3分)长方体的全面积为11,十二条棱长度之和为24,则这个长方体的一条对角线长为()ABC5D6二、填空题(共5小题,每小题3分,满分15分)19(3分)(2009金山区二模) 的值为 _20(3分)已知在第三象限且tan=2,则cos的值是 _21(3分)方程 的解是_22(3分)设含有10个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,则 的值为
5、_23(3分)焦点为F1(2,0)和F2(6,0),离心率为2的双曲线的方程是 _三、解答题(共5小题,满分51分)24(9分)求sin220+cos280+sin20cos80的值25(10分)设zC,解方程z2|z|=7+4i26(10分)如图,已知ABCDA1B1C1D1是棱长为a的正方体,E、F分别为棱AA1与CC1的中点,求四棱锥的A1EBFD1的体积27(10分)在ABC中,已知BC边上的高所在直线的方程为x2y+1=0,A的平分线所在直线的方程为y=0若点B的坐标为(1,2),求点C的坐标28(12分)设等差数列an的前n项和为Sn已知a3=12,S120,S130(1)求公差d
6、的取值范围(2)指出S1,S2,S12中哪一个值最大,并说明理由参考答案一、选择题(共18小题,每小题3分,满分54分)1(3分) 的值是()AB1CD2考点:对数的运算性质 分析:根据 ,从而得到答案解答:解: 故选A点评:本题考查对数的运算性质2(3分)已知椭圆 上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为()A9B7C5D3考点:椭圆的简单性质;椭圆的定义 专题:综合题分析:由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为3,求出P到另一焦点的距离即可解答:解:由椭圆
7、,得a=5,则2a=10,且点P到椭圆一焦点的距离为3,由定义得点P到另一焦点的距离为2a3=103=7故选B点评:此题考查学生掌握椭圆的定义及简单的性质,是一道中档题3(3分)如果函数y=sin(x)cos(x)的最小正周期是4,那么常数为()A4B2CD考点:二倍角的正弦 分析:逆用二倍角正弦公式,得到y=Asin(x+)+b的形式,再利用正弦周期公式和周期是求出的值解答:解:y=sin(x)cos(x)= sin(2x),T=22=4= ,故选D点评:二倍角公式是高考中常考到的知识点,特别是余弦角的二倍角公式,对它们正用、逆用、变形用都要熟悉,本题还考的周期的公式求法,记住公式,是解题的
8、关键,注意的正负,要加绝对值4(3分)在( )8的二项展开式中,常数项等于()AB7C7D 考点:二项式定理 专题:计算题分析:利用二项展开式的通项公式求出展开式的通项,令x的指数为0,求出r代入通项求出常数项解答:解:( )8的二项展开式的通项公式为Tr+1=c8r( )8r(x )r= x8 r,令8 r=0得r=6,所以r=6时,得二项展开式的常数项为T7= =7故选C点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题5(3分)已知轴截面是正方形的圆柱的高与球的直径相等,则圆柱的全面积与球的表面积的比是()A6:5B5:4C4:3D3:2考点:旋转体(圆柱、圆锥、圆台) 专
9、题:计算题分析:设圆柱的底面半径,求出圆柱的全面积以及球的表面积,即可推出结果解答:解:设圆柱的底面半径为r,则圆柱的全面积是:2r2+2r2r=6r2球的全面积是:4r2,所以圆柱的全面积与球的表面积的比:3:2故选D点评:本题考查旋转体的表面积,是基础题6(3分)图中曲线是幂函数y=xn在第一象限的图象已知n取2, 四个值,则相应于曲线c1、c2、c3、c4的n依次为() A2, , ,2B2, , ,2C ,2,2, D2, ,2, 考点:幂函数的图像 专题:阅读型分析:由题中条件:“n取2, 四个值”,依据幂函数y=xn的性质,在第一象限内的图象特征可得解答:解:根据幂函数y=xn的性
10、质,在第一象限内的图象,n越大,递增速度越快,故曲线c1的n=2,曲线c2的n= ,c3的n= ,曲线c4的n=2,故依次填2, , ,2故选A点评:幂函数是重要的基本初等函数模型之一学习幂函数重点是掌握幂函数的图形特征,即图象语言,熟记幂函数的图象、性质,把握幂函数的关键点(1,1)和利用直线y=x来刻画其它幂函数在第一象限的凸向7(3分)若loga2logb20,则()A0ab1B0ba1Cab1Dba1考点:对数函数图象与性质的综合应用 专题:计算题分析:利用对数的换底公式,将题中条件:“loga2logb20,”转化成同底数对数进行比较即可解答:解:loga2logb20,由对数换底公
11、式得: 0log2alog2b根据对数的性质得:0ba1故选B点评:本题主要考查对数函数的性质,对数函数是许多知识的交汇点,是历年高考的必考内容,在高考中主要考查:定义域、值域、图象、对数方程、对数不等式、对数函数的主要性质(单调性等)及这些知识的综合运用8(3分)原点关于直线8x+6y=25的对称点坐标为()A( )B( )C(3,4)D(4,3)考点:中点坐标公式 专题:综合题分析:设出原点与已知直线的对称点A的坐标(a,b),然后根据已知直线是线段AO的垂直平分线,得到斜率乘积为1且AO的中点在已知直线上分别列出两个关于a与b的方程,联立两个方程即可求出a与b的值,写出A的坐标即可解答:
12、解:设原点关于直线8x+6y=25的对称点坐标为A(a,b),直线8x+6y=25的斜率k= ,因为直线OA与已知直线垂直,所以kOA= = ,即3a=4b;且AO的中点B在已知直线上,B( , ),代入直线8x+6y=25得:4a+3b=25,联立解得:a=4,b=3所以A的坐标为(4,3)故选D点评:此题考查学生掌握两直线垂直时斜率所满足的关系,利用运用中点坐标公式化简求值,是一道中档题9(3分)在四棱锥的四个侧面中,直角三角形最多可有()A1个B2个C3个D4个考点:棱锥的结构特征 专题:作图题分析:借助长方体的一个顶点画出图形,不难解答本题解答:解:如图底面是矩形,一条侧棱垂直底面,那
13、么它的四个侧面都是直角三角形故选D点评:本题考查棱锥的结构特征,考查空间想象能力,要求学生心中有图,是基础题10(3分)圆心在抛物线y2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是()Ax2+y2x2y =0Bx2+y2+x2y+1=0Cx2+y2x2y+1=0Dx2+y2x2y+ =0考点:圆的一般方程 分析:所求圆圆心在抛物线y2=2x上,且与x轴和该抛物线的准线都相切,不难由抛物线的定义知道,圆心、半径可得结果解答:解:圆心在抛物线y2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程,以及抛物线的定义可知,所求圆的圆心的横坐标x= ,即圆心( ,1),半径是1,所以排除
14、A、B、C故选D点评:本题考查圆的方程,抛物线的定义,考查数形结合、转化的数学思想,是中档题11(3分)在0,2上满足sinx 的x的取值范围是()ABCD考点:正弦函数的单调性 专题:计算题分析:利用三角函数线,直接得到sinx 的x的取值范围,得到正确选项解答:解:在0,2上满足sinx ,由三角函数线可知,满足sinx ,的解,在图中阴影部分,故选B点评:本题是基础题,考查三角函数的求值,利用单位圆三角函数线,或三角函数曲线,都可以解好本题,由于 是特殊角的三角函数值,可以直接求解12(3分)已知直线l1和l2的夹角平分线为y=x,如果l1的方程是ax+by+c=0,那么直线l2的方程为
15、()Abx+ay+c=0Baxby+c=0Cbx+ayc=0Dbxay+c=0考点:与直线关于点、直线对称的直线方程 专题:计算题分析:因为由题意知,直线l1和l2关于直线y=x对称,故把l1的方程中的x 和y交换位置即得直线l2的方程解答:解:因为夹角平分线为y=x,所以直线l1和l2关于直线y=x对称,故l2的方程为 bx+ay+c=0故选 A点评:本题考查求对称直线的方程的方法,当两直线关于直线y=x对称时,把其中一个方程中的x 和y交换位置,即得另一条直线的方程13(3分)如果,( ,)且tancot,那么必有()ABC+ D+ 考点:正切函数的单调性 专题:计算题分析:先判断tan0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1992 全国卷 高考 文科 数学 答案
限制150内