2006年全国卷Ⅱ高考理科数学真题及答案.doc
《2006年全国卷Ⅱ高考理科数学真题及答案.doc》由会员分享,可在线阅读,更多相关《2006年全国卷Ⅱ高考理科数学真题及答案.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2006年全国卷高考理科数学真题及答案一、选择题(共12小题,每小题5分,满分60分)1(5分)已知集合M=x|x3,N=x|log2x1,则MN=()ABx|0x3Cx|1x3Dx|2x32(5分)函数y=sin2xcos2x的最小正周期是()A2B4CD3(5分)=()ABCiDi4(5分)如图,PA、PB、DE分别与O相切,若P=40,则DOE等于()度A40B50C70D805(5分)已知ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是()AB6CD126(5分)已知函数f(x)=lnx+1(x0),则f(x)的反函数为()
2、Ay=ex+1(xR)By=ex1(xR)Cy=ex+1(x1)Dy=ex1(x1)7(5分)如图,平面平面,A,B,AB与两平面、所成的角分别为和过A、B分别作两平面交线的垂线,垂足为A、B,则AB:AB=()A2:1B3:1C3:2D4:38(5分)函数y=f(x)的图象与函数g(x)=log2x(x0)的图象关于原点对称,则f(x)的表达式为()ABCf(x)=log2x(x0)Df(x)=log2(x)(x0)9(5分)已知双曲线=1(a0,b0)的一条渐近线方程为y=x,则双曲线的离心率为()ABCD10(5分)若f(sinx)=2cos2x,则f(cosx)等于()A2sin2xB
3、2+sin2xC2cos2xD2+cos2x11(5分)设Sn是等差数列an的前n项和,若=,则=()ABCD12(5分)函数的最小值为()A190B171C90D45二、填空题(共4小题,每小题4分,满分16分)13(4分)在的展开式中常数项为(用数字作答)14(4分)已知ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为15(4分)过点的直线l将圆(x2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=16(4分)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图)为了分析居民的收入与年龄
4、、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在2500,3000)(元)月收入段应抽出人三、解答题(共6小题,满分74分)17(12分)已知向量,(1)若,求;(2)求的最大值18(12分)某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品(1)用表示抽检的6件产品中二等品的件数,求的分布列及的数学期望;(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率19(12分)如图,在直三棱柱ABCA
5、1B1C1中,AB=BC,D、E分别为BB1、AC1的中点(I)证明:ED为异面直线BB1与AC1的公垂线;(II)设,求二面角A1ADC1的大小20(12分)设函数f(x)=(x+1)ln(x+1)若对所有的x0,都有f(x)ax成立,求实数a的取值范围21(14分)已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且过A、B两点分别作抛物线的切线,设其交点为M()证明为定值;()设ABM的面积为S,写出S=f()的表达式,并求S的最小值22(12分)设数列an的前n项和为Sn,且方程x2anxan=0有一根为Sn1,n=1,2,3,(1)求a1,a2;(2)猜想数列Sn的通项公式,
6、并给出严格的证明2006年全国卷高考理科数学真题参考答案一、选择题(共12小题,每小题5分,满分60分)1(5分)已知集合M=x|x3,N=x|log2x1,则MN=()ABx|0x3Cx|1x3Dx|2x3【分析】解出集合N,结合数轴求交集【解答】解:N=x|log2x1=x|x2,用数轴表示可得答案D故选D2(5分)函数y=sin2xcos2x的最小正周期是()A2B4CD【分析】将函数化简为:y=Asin(x+)的形式即可得到答案【解答】解:所以最小正周期为,故选D3(5分)=()ABCiDi【分析】化简复数的分母,再分子、分母同乘分母的共轭复数,化简即可【解答】解:故选A4(5分)如图
7、,PA、PB、DE分别与O相切,若P=40,则DOE等于()度A40B50C70D80【分析】连接OA、OB、OP,由切线的性质得AOB=140,再由切线长定理求得DOE的度数【解答】解:连接OA、OB、OP,P=40,AOB=140,PA、PB、DE分别与O相切,AOD=POD,BOE=POE,DOE=AOB=140=70故选C5(5分)已知ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是()AB6CD12【分析】由椭圆的定义:椭圆上一点到两焦点的距离之和等于长轴长2a,可得ABC的周长【解答】解:由椭圆的定义:椭圆上一点到两焦点
8、的距离之和等于长轴长2a,可得ABC的周长为4a=,故选C6(5分)已知函数f(x)=lnx+1(x0),则f(x)的反函数为()Ay=ex+1(xR)By=ex1(xR)Cy=ex+1(x1)Dy=ex1(x1)【分析】本题考查反函数的概念、求反函数的方法、指数式与对数式的互化,求函数的值域;将y=lnx+1看做方程解出x,然后由原函数的值域确定反函数的定义域即可【解答】解:由y=lnx+1解得x=ey1,即:y=ex1x0,yR所以函数f(x)=lnx+1(x0)反函数为y=ex1(xR)故选B7(5分)如图,平面平面,A,B,AB与两平面、所成的角分别为和过A、B分别作两平面交线的垂线,
9、垂足为A、B,则AB:AB=()A2:1B3:1C3:2D4:3【分析】设AB的长度为a用a表示出AB的长度,即可得到两线段的比值【解答】解:连接AB和AB,设AB=a,可得AB与平面所成的角为,在RtBAB中有AB=,同理可得AB与平面所成的角为,所以,因此在RtAAB中AB=,所以AB:AB=,故选A8(5分)函数y=f(x)的图象与函数g(x)=log2x(x0)的图象关于原点对称,则f(x)的表达式为()ABCf(x)=log2x(x0)Df(x)=log2(x)(x0)【分析】先设函数f(x)上的点为(x,y),根据(x,y)关于原点的对称点为(x,y)且函数y=f(x)的图象与函数
10、g(x)=log2x(x0)的图象关于原点对称,得到x与y的关系式,即得答案【解答】解:设(x,y)在函数f(x)的图象上(x,y)关于原点的对称点为(x,y),所以(x,y)在函数g(x)上y=log2(x)f(x)=log2(x)(x0)故选D9(5分)已知双曲线=1(a0,b0)的一条渐近线方程为y=x,则双曲线的离心率为()ABCD【分析】由题意设出双曲线的方程,得到它的一条渐近线方程y=x即y=x,由此可得b:a=4:3,结合双曲线的平方关系可得c与a的比值,求出该双曲线的离心率【解答】解:双曲线的中心在原点,焦点在x轴上,设双曲线的方程为,(a0,b0)由此可得双曲线的渐近线方程为
11、y=x,结合题意一条渐近线方程为y=x,得 =,设b=4t,a=3t,则c=5t(t0)该双曲线的离心率是e=故选A10(5分)若f(sinx)=2cos2x,则f(cosx)等于()A2sin2xB2+sin2xC2cos2xD2+cos2x【分析】本题考查的知识点是函数解析式的求法,根据已知中f(sinx)=2cos2x,结合倍角公式对解析式进行凑配,不难得到函数f(x)的解析式,然后将cosx代入,并化简即可得到答案【解答】解:f(sinx)=2(12sin2x)=1+2sin2x,f(x)=1+2x2,(1x1)f(cosx)=1+2cos2x=2+cos2x故选D11(5分)设Sn是
12、等差数列an的前n项和,若=,则=()ABCD【分析】根据等差数列的前n项和公式,用a1和d分别表示出s3与s6,代入中,整理得a1=2d,再代入中化简求值即可【解答】解:设等差数列an的首项为a1,公差为d,由等差数列的求和公式可得且d0,故选A12(5分)函数的最小值为()A190B171C90D45【分析】利用绝对值的几何意义求解或者绝对值不等式的性质求解【解答】解法一:f(x)=|x1|+|x2|+|x3|+|x19|表示数轴上一点到1,2,3,19的距离之和,可知x在119最中间时f(x)取最小值即x=10时f(x)有最小值90,故选C解法二:|x1|+|x19|18,当1x19时取
13、等号;|x2|+|x18|16,当2x18时取等号;|x3|+|x17|14,当3x17时取等号;|x9|+|x11|2,当9x11时取等号;|x10|0,当x=10时取等号;将上述所有不等式累加得|x1|+|x2|+|x3|+|x19|18+16+14+2+0=90(当且仅当x=10时取得最小值)故选C二、填空题(共4小题,每小题4分,满分16分)13(4分)在的展开式中常数项为45(用数字作答)【分析】利用二项式的通项公式(让次数为0,求出r)就可求出答案【解答】解:要求常数项,即405r=0,可得r=8代入通项公式可得Tr+1=C108=C102=45故答案为:4514(4分)已知ABC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2006 全国卷 高考 理科 数学 答案
限制150内