手机TDD噪音解决方案(共7页).doc
《手机TDD噪音解决方案(共7页).doc》由会员分享,可在线阅读,更多相关《手机TDD噪音解决方案(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上手机TDD噪音解决方案!手机、个人数字助理 (PDA) 和其它便携式通信设备常常在条件恶劣而且噪声相当大的环境下工作。这推动了新式音频功率放大器 (PA) 的发展,这些 PA 提供了全差动的架构,实现了良好的射频 (RF)、共模以及电源纹波抑制。本文将讨论单端架构、典型桥接负载以及全差动的音频放大器,此外还将探讨噪声对电源和 RF 校正的影响。 业界使用三种主要类型的音频功率放大器架构:单端、典型的桥接负载以及全差动的放大器。单端 (SE) 音频功率放大器一般是所有架构中最简单的一种。不过,在手机中我们一般不用其驱动酷炫铃声或免提操作模式等应用的扬声器。SE 放大器一
2、般都用于驱动耳机,用于欣赏 MP3格式的音乐或游戏音频(图 1)。图1 单端音频功放在典型的单电源单端配置中,需要用一个输出耦合电容器 (COUT) 阻止放大器输出处的 DC 偏置,这就避免了负载中的 DC 电流。输出耦合电容器和负载阻抗形成高通滤波器,它由以下方程式决定: 其中的 RL 代表扬声器阻抗。 从性能的角度看,主要的弱点在于典型的小负载阻抗(这里是 4 至 8 的扬声器)将驱动低频转角频率 (FC) 升高。因此需要较大值的 COUT 将低频传送到扬声器中。我们不妨设想这样一种情况,假设扬声器负载为 8,如使用 68F 的 COUT,则所有低于 292Hz 的频率将衰减。 为了用单端
3、放大器取消输出电容器 (COUT),我们需要分离 (split) 电源轨。该解决方案对无线环境不太合适。这要求手机设计人员为负轨添加 DC 至 DC 转换器,这就提高了该解决方案的成本以及大小。此外,SE 放大器打开、关闭、进入关机状态或从关机状态恢复时总会发出噗噗声。当扬声器的电压发生一定(电压脉冲)变化时,这种不良噪声就会出现。这与上升时间、下降时间以及电压脉冲宽度有关。大多数人对 20Hz 至 20kHz 的声音有反应。因此,如果脉冲长度低于 50ms,那么耳朵就不会有反应。此时频率将大于 20kHz,也就不会听到噗噗声。如果脉冲的上升时间多于 50ms,此时的频率将低于 20Hz,耳朵
4、也听不到噗噗声。如果脉冲宽度大于 20ms,就会听到这出了名的噗噗声,这时脉冲的上升时间不到 50ms。由于单端放大器只有立即关闭才能产生脉冲,因此放大器的斜波上升必须大于 50ms。该速度对大多数智能电话应用来说太慢了。 在单端单电源情况下,噗噗声也会出现,因为输出 DC 阻碍电容器保存电荷。当放大器输出处发生变化时,其电压以及电容器上的原有电压都会加到扬声器上,结果就会发出噗噗声。 最后,当谈到音频放大器时,向负载供电是关键问题。在单电源情况下使用 SE 放大器时,扬声器的一端通过输出电容器连接于放大器的输出;另一端接地。这样,扬声器上的电势只能在VDD 与接地之间。我们可用以下方程式计算
5、到负载的输出功率: 最大峰至峰输出电压是电源电压。我们假定正弦波输出,则最大 RMS 输出电压为: 最大理论输出功率为: 稍后我们将说明从相同的电源和负载阻抗,桥接式负载 (BTL) 和全差动放大器可输出的功率为SE 放大器的四倍。 图2桥接式负载音频功放目前的手机和便携式通信设备均采用一般类型的音频放大器架构:BTL 输出配置的单端输入(图 2)。BTL 放大器包括两个单端放大器,驱动负载的两端。第一个放大器 (A) 设置增益,而第二个放大器 (B) 则作为单位增益逆变器。该 BTL 放大器的增益由下式确定: 由于单位增益反相放大器 (B) 的缘故,增益翻番。这种差动驱动配置的主要好处之一就
6、在于到负载的功率。有了到扬声器的差动驱动,一侧下降时另一侧就会上升,反之亦然。与参考接地的负载相比,这种特性能有效地使负载电压摆幅翻番。由于负载上的电压摆幅有效翻番,因此输出功率方程式变为: BTL 的最大理论输出功率为: 与单电源单端音频功率放大器相比,扬声器上电压的翻番使得相同电源轨与负载阻抗的输出功率翻了两番。 还有一点需要考虑的就是旁路电容 (CBYPASS)。该电容是电路中最关键的元件。首先,CBYPASS 决定着放大器启动的速度。如果放大器斜波上升较慢,就可减小噗噗的噪声。CBYPASS 与高阻抗电阻分压器网络生成中间轨 (mid-rail),形成了 RC 时间常数。正如我们前面提
7、到的那样,如果时间常数大于 50ms,就听不到噗噗声。 CBYPASS 的第二个功能就是降低电源生成的噪声。由于输出驱动信号的耦合,因此产生该噪声,它来自放大器内部的中间轨生成电路。该噪声作为降低的电源抑制比 (PSRR) 出现。在电源噪声较大的系统中,它可能会影响 THD + N。 与 SE 音频放大器相比,这种架构的优势在于相同电源轨实现的输出功率量。此外,还可去掉输出 DC 阻塞电容器。总而言之,扬声器两侧均偏置在 VDD/2 左右,这就消除了 DC 偏移。现在,低频性能只受限于输入网络和扬声器响应。 但是,这种类型的配置也有明显的不足。如果任何噪声耦合进单端输入,则将会出现在输出中,并
8、被放大器增益放大。由于放大器 B 没有至输入的反馈,因此任何耦合至输出的高频噪声还会产生咔咔或嗡嗡声。这种现象称作 RF 校正。 全差动的放大器 图3 全差动音频放大器目前许多手机、PDA、智能电话和新式无线设备都在用一种新型的音频功率放大器架构,这就是图 3 所示的全差动音频放大器。全差动放大器增益由下式确定: 全差动放大器具有差动的输入与输出。这些 PA 包括差动与共模反馈。差动反馈保证放大器输出差动电压,其等于差动输入乘以增益。外部增益设置电阻器作为反馈环路。不管输入的共模电压为多少,共模反馈保证输出的共模电压偏置为 VDD/2 左右。该反馈是器件内在固有的。它用分压器和电容器产生了稳定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 手机 TDD 噪音 解决方案
限制150内