《高考数学数列专题复习121.doc》由会员分享,可在线阅读,更多相关《高考数学数列专题复习121.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流高考数学数列专题复习121.精品文档.2.2.1 数列的递推公式 学案知识梳理1.数列:按一定次序排列的一列数叫做数列.(1)数列的一般形式可以写成a1,a2,a3,an,简记为an,其中an是数列的第n项.(2)可视数列为特殊函数,它的定义域是正自然数集的子集(必须连续),因此研究数列可联系函数的相关知识,如数列的表示法(列表法、图象法、公式法等)、数列的分类(有限和无穷、有界无界、单调或摆动等).应注意用函数的观点分析问题.2.通项公式如果数列an的第n项an与项数n之间的函数关系可以用一个公式来表达,那么这个公式就叫做数列的通项公式,可
2、以记为an=f(n).并非每一个数列都可以写出通项公式,有些数列的通项公式也并非是唯一的.3.数列的前n项和数列an的前n项之和,叫做数列的前n项和,常用Sn表示.Sn与通项an的基本关系是:an= Sn=a1+a2+an.4.数列的分类(1)按项分类有穷数列:项数有限;无穷数列:项数无限.(2)按an的增减性分类递增数列:对于任何nN*,均有an+1an;递减数列:对于任何nN*,均有an+1an;摆动数列:例如:1,1,1,1,;常数数列:例如:6,6,6,6,;有界数列:存在正数M使|an|M,nN*;无界数列:对于任何正数M,总有项an使得|an|M.5.递推是认识数列的重要手段,递推
3、公式是确定数列的一种方式,根据数列的递推关系写出数列.点击双基1.数列an中,a1=1,对于所有的n2,nN都有a1a2a3an=n2,则a3+a5等于A. B. C. D. 解析一:令n=2、3、4、5,分别求出a3=,a5=,a3+a5=.解析二:当n2时,a1a2a3an=n2.当n3时,a1a2a3an1=(n1)2.两式相除an=()2,a3=,a5=.a3+a5=.答案:A2.已知数列an中,a1=1,a2=3,an=an1+(n3),则a5等于A. B. C.4D.5解析:令n=3,4,5,求a5即可.答案:A3.根据市场调查结果,预测某种家用商品从年初开始的n个月内累积的需求量
4、Sn(万件)近似地满足关系式Sn=(21nn25)(n=1,2,12),按此预测,在本年度内,需求量超过1.5万件的月份是A.5、6月B.6、7月C.7、8月D.8、9月解法一:由Sn解出an=(n2+15n9),再解不等式(n2+15n9)1.5,得6n9.解法二:将选项中的月份代入计算验证.答案:C4.已知an=,且数列an共有100项,则此数列中最大项为第_项,最小项为第_项.解析:an=1+,又4445,0,故第45项最大,第44项最小.答案:45 44典例剖析【例1】 在数列an中,a1=1,an+1=,求an.剖析:将递推关系式变形,观察其规律.解:原式可化为=n,=1,=2,=3
5、,=n1.相加得=1+2+(n1),an=.评析:求数列通项公式,特别是由递推公式给出数列时,除迭加、迭代、迭乘外还应注意变形式是否是等差(等比)数列.对于数列递推公式不要升温,只要能根据递推公式写出数列的前几项,由此来猜测归纳其构成规律.【例2】 有一数列an,a1a,由递推公式an1,写出这个数列的前4项,并根据前4项观察规律,写出该数列的一个通项公式.剖析:可根据递推公式写出数列的前4项,然后分析每一项与该项的序号之间的关系,归纳概括出an与n之间的一般规律,从而作出猜想,写出满足前4项的该数列的一个通项公式.解:a1a,an1,a2,a3,a4.观察规律:an形式,其中x与n的关系可由n1,2,3,4得出x2n1.而y比x小1,an.评述:从特殊的事例,通过分析、归纳、抽象总结出一般规律,再进行科学地证明,这是创新意识的具体体现,这种探索问题的方法,在解数列的有关问题中经常用到,应引起足够的重视.思考讨论请同学总结解探索性问题的一般思路.【例3】 已知数列an的通项公式an=cn+,且a2=,a4=,求a10.剖析:要求a10,只需求出c、d即可.解:由题意知 解得an=n+.a10=10+=.评述:在解题过程中渗透了函数与方程的思想.
限制150内