高中数学必修1导学案105页.doc
《高中数学必修1导学案105页.doc》由会员分享,可在线阅读,更多相关《高中数学必修1导学案105页.doc(69页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流高中数学必修1导学案105页.精品文档.1.1.1 集合的含义及其表示方法(1)一、课前预习新知(一)、预习目标:初步理解集合的含义,了解属于关系的意义,知道常用数集及其记法(二)、预习内容: 阅读教材填空:1 、集合:一般地,把一些能够 对象看成一个整体,就说这个整体是由这些对象的全体构成的 (或 )。构成集合的每个对象叫做这个集合的 (或 )。2、集合与元素的表示:集合通常用 来表示,它们的元素通常用 来表示。3、元素与集合的关系:如果a是集合A的元素,就说 ,记作 ,读作 。如果a不是集合A的元素,就说 ,记作 ,读作 。4.常用的数集
2、及其记号:(1)自然数集: ,记作 。(2)正整数集: ,记作 。(3)整 数 集: ,记作 。(4)有理数集: ,记作 。(5)实 数 集: ,记作 。二、课内探究新知(一)、学习目标 1.通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.2.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.学习重点:集合的基本概念与表示方法.学习难点:选择恰当的方法表示一些简单的集合.(二)、学习过程1、 核对
3、预习学案中的答案2、 思考下列问题请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?世界上最高的山能不能构成一个集合?世界上的高山能不能构成一个集合?问题说明集合中的元素具有什么性质?由实数1
4、、2、3、1组成的集合有几个元素?问题说明集合中的元素具有什么性质?由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?3、集合元素的三要素是 、 、 。4、例题例题1.下列各组对象不能组成集合的是( )A.大于6的所有整数 B.高中数学的所有难题C.被3除余2的所有整数 D.函数y=图象上所有的点变式训练11.下列条件能形成集合的是( )A.充分小的负数全体 B.爱好足球的人C.中国的富翁 D.某公司的全体员工例题2下列结论中,不正确的是( )A.若aN,则-aN B.若aZ,则
5、a2ZC.若aQ,则aQ D.若aR,则变式训练2判断下面说法是否正确、正确的在( )内填“”,错误的填“”(1)所有在N中的元素都在N*中( )(2)所有在N中的元素都在中( )(3)所有不在N*中的数都不在Z中( )(4)所有不在Q中的实数都在R中( )(5)由既在R中又在N*中的数组成的集合中一定包含数0( )(6)不在N中的数不能使方程4x8成立( )5、 课堂小结三、当堂检测1、你能否确定,你所在班级中,高个子同学构成的集合?并说明理由。你能否确定,你所在班级中,最高的3位同学构成的集合?2、 (1) -3 N; (2)3.14 Q; (3) Q; (4)0 ; (5) Q; (6)
6、 R; (7)1 N+; (8) R。课后练习巩固新知1.下列对象能否组成集合:(1)数组1、3、5、7;(2)到两定点距离的和等于两定点间距离的点;(3)满足3x-2x+3的全体实数;(4)所有直角三角形;(5)美国NBA的著名篮球明星;(6)所有绝对值等于6的数;(7)所有绝对值小于3的整数;(8)中国男子足球队中技术很差的队员;(9)参加2008年奥运会的中国代表团成员.2.(口答)说出下面集合中的元素:(1)大于3小于11的偶数;(2)平方等于1的数;(3)15的正约数.3.用符号或填空:(1)1_N,0_N,-3_N,0.5_N,_N;(2)1_Z,0_Z,-3_Z,0.5_Z,_Z
7、;(3)1_Q,0_Q,-3_Q,0.5_Q,_Q;(4)1_R,0_R,-3_R,0.5_R,_R.4.判断正误:(1)所有属于N的元素都属于N*. ( )(2)所有属于N的元素都属于Z. ( )(3)所有不属于N*的数都不属于Z. ( )(4)所有不属于Q的实数都属于R. ( )(5)不属于N的数不能使方程4x=8成立. ( )1.1.1 集合的含义及其表示方法(2)课前预习学案一、预习目标:1、会用列举法表示简单的结合。2、明确描述法表示集合的二、预习内容: 阅读教材表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由120以内的所有质数
8、组成的集合课内探究学案一、【学习目标】1、集合和元素的表示法;2、掌握一些常用的数集及其记法3、掌握集合两种表示法:列举法、描述法。学习重难点:集合的两种表示法:列举法和描述法。二、学习过程1 、核对预习学案中的答案2、 列举法的基本格式是 描述法的基本格式是 3、例题例题1、.用列举法表示下列集合:(1)、小于5的正奇数组成的集合;(2)、能被3整除且大于4小于15的自然数组成的集合;(3)、方程x2-9=0的解组成的集合;(4)、15以内的质数;(5)、x|Z,xZ.变式训练1用列举法表示下列集合:(1)x2-4的一次因式组成的集合;(2)y|y=-x2-2x+3,xR,yN;(3)方程x
9、2+6x+9=0的解集;(4)20以内的质数;(5)(x,y)|x2+y2=1,xZ,yZ;(6)大于0小于3的整数;(7)xR|x2+5x-14=0;(8)(x,y)|xN且1x4,y-2x=0;(9)(x,y)|x+y=6,xN,yN.例题2用描述法分别表示下列集合:(1)二次函数y=x2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-73的解集.变式训练2用描述法表示下列集合:(1)方程2x+y=5的解集;(2)小于10的所有非负整数的集合;(3)方程ax+by=0(ab0)的解;(4)数轴上离开原点的距离大于3的点的集合;(5)平面直角坐标系中第、象
10、限点的集合;(6)方程组的解的集合;(7)1,3,5,7,;(8)x轴上所有点的集合;(9)非负偶数;(10)能被3整除的整数.三、当堂检测 课本P5练习1、2.课后练习与提高1.下列集合表示法正确的是()A.,B.全体实数C.有理数D.不等式的解集为2.用列举法表示下列集合是的约数_;_;_;数字和为的两位数_; _;3.用列举法和描述法分别表示方程5的解集4.集合用列举法表示为 .1.1. 2集合间的基本关系课前预习学案一、预习目标:初步理解子集的含义,能说明集合的基本关系。二、预习内容:阅读教材第7页中的相关内容,并思考回答下例问题: (1)集合A是集合B的真子集的含义是什么?什么叫空集
11、? (2)集合A是集合B的真子集与集合A是集合B的子集之间有什么区别? (3)0,0与三者之间有什么关系? (4)包含关系与属于关系正义有什么区别?试结合实例作出解释. (5)空集是任何集合的子集吗?空集是任何集合的真子集吗? (6)能否说任何一人集合是它本身的子集,即? (7)对于集合A,B,C,D,如果AB,BC,那么集合A与C有什么关系?课内探究学案一、学习目标(1)了解集合之间包含与相等的含义,能识别给定集合的子集。(2)理解子集.真子集的概念。(3)能使用图表达集合间的关系,体会直观图示对理解抽象概念的作用.学习重点:集合间的包含与相等关系,子集与其子集的概念.学习难点:难点是属于关
12、系与包含关系的区别二、学习过程1、 思考下列问题问题l:实数有相等.大小关系,如5=5,57,53等等,类比实数之间的关系,你会想到集合之间有什么关系呢?问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗? (1); (2)设A为某中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合; (3)设 (4).问题3:与实数中的结论“若”相类比,在集合中,你能得出什么结论?你对上面3个问题的结论是 2、例题例题1.某工厂生产的产品在质量和长度上都合格时,该产品才合格。若用A表示合格产品,B表示质量合格的产品的集合,C表示长度合格的产品的集合则下列包含关系哪些成立?试用Venn
13、图表示这三个集合的关系。.变式训练1用适当的符号()填空:4 11 例题2写出集合a,b的所有子集,并指出哪些是它的真子集.变式训练2写出集合0,1,2的所有子集,并指出哪些是它的真子集.5 课堂小结三、当堂检测(1)讨论下列集合的包含关系A=本年天阴的日子,B=本年天下雨的日子;A=-2,-1,0,1,2,3,B=-1,0,1。(2)写出集合A=1,2,3的所有非空真子集和非空子集课后练习与提高1用连接下列集合对:A=济南人,B=山东人;A=N,B=R;A=1,2,3,4,B=0,1,2,3,4,5;A=本校田径队队员,B=本校长跑队队员;A=11月份的公休日,B=11月份的星期六或星期天2
14、若A=,,则有几个子集,几个真子集?写出A所有的子集。3设A=3,Z,B=6,Z,则A、B之间是什么关系?1.1.3集合的基本运算(并集、交集)导学案课前预习学案一、预习目标:了解交集、并集的概念及其性质,并会计算一些简单集合的交集并集。二、预习内容:1、交集:一般地,由所有属于A又属于B的元素所组成的集合,叫做A,B的 记作 ,即 2、并集: 一般地,对于给定的两个集合A,B把它们所有的元素并在一起所组成的集合,叫做A,B的 记作 ,即 3、用韦恩图表示两个集合的交集与并集。提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中疑惑点疑惑内容课内探究学案(一)学习目标:1、熟练
15、掌握交集、并集的概念及其性质。2、注意用数轴、韦恩图来解决交集、并集问题。3、体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力。学习重难点:会求两个集合的交集与并集。来源:学。科。网Z。X。X。K(二)自主学习1设A=x|x是等腰三角形,B=x|x是直角三角形,求AB.2.设A=x|x是锐角三角形,B=x|x是钝角三角形,求AB.(三)合作探究:思考交集与并集的性质有哪些?来源:学*科*网Z*X*X*K(四)精讲精练例1、已知集合M(x,y)|x+y=2,N=(x,y)|xy=4,那么集合MN为( )A.x=3,y=1 B.(3,1)C.3,1D.(3,1)变式训练1:已知集合Mx
16、|x+y=2,N=y|y= x2,那么MN为 例2设A=x|-1x2,B=x|1x3,求AB.变式训练2:已知A=x|x2px+15=0,B=x|x2axb=0,且AB=2,3,5,AB=3,求p,a,b的值。三、课后练习与提高1、选择题(1)设,则()()(), (2)已知2,则()或或(,),(,) (3)已知集合,若,则实数()或或或2、填空题(4).若集合、满足,则集合,的关系是_(5)设,则=_。3、解答题(6).已知关于x的方程3x2+px7=0的解集为A,方程3x27x+q=0的解集为B,若AB=,求AB.参考答案解析由条件知,故选解析集合中2()2,集合中,故选1.1.3集合的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 导学案 105
限制150内