高考数学试题目分类整理汇编立体几何.doc
《高考数学试题目分类整理汇编立体几何.doc》由会员分享,可在线阅读,更多相关《高考数学试题目分类整理汇编立体几何.doc(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流高考数学试题目分类整理汇编立体几何.精品文档.四、立体几何一、选择题1.(重庆理9)高为的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为A B C1 D【答案】C2.(浙江理4)下列命题中错误的是A如果平面,那么平面内一定存在直线平行于平面B如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面C如果平面,平面,那么D如果平面,那么平面内所有直线都垂直于平面【答案】D3.(四川理3),是空间三条不同的直线,则下列命题正确的是A,B,C,共面 D,共点,共面【
2、答案】B【解析】A答案还有异面或者相交,C、D不一定4.(陕西理5)某几何体的三视图如图所示,则它的体积是ABCD【答案】A5.(浙江理3)若某几何体的三视图如图所示,则这个几何体的直观图可以是【答案】D6.(山东理11)右图是长和宽分别相等的两个矩形给定下列三个命题:存在三棱柱,其正(主)视图、俯视图如下图;存在四棱柱,其正(主)视图、俯视图如右图;存在圆柱,其正(主)视图、俯视图如右图其中真命题的个数是A3 B2 C1 D0【答案】A7.(全国新课标理6)。在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为【答案】D8.(全国大纲理6)已知直二面角 ,点A,AC,C为垂
3、足,B,BD,D为垂足若AB=2,AC=BD=1,则D到平面ABC的距离等于A B C D1 【答案】C9.(全国大纲理11)已知平面截一球面得圆M,过圆心M且与成二面角的平面截该球面得圆N若该球面的半径为4,圆M的面积为4,则圆N的面积为A7 B9 C11 D13【答案】D10.(湖南理3)设图1是某几何体的三视图,则该几何体的体积为ABCD【答案】B11.(江西理8)已知,是三个相互平行的平面平面,之间的距离为,平面,之间的距离为直线与,分别相交于,那么“=”是“”的 A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要条件【答案】C12.(广东理7)如图13,某几何体的
4、正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A B C D【答案】B13.(北京理7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A8 B C10 D【答案】C14.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为(A)48 (B)32+8 (C)48+8 (D)80【答案】C15.(辽宁理8)。如图,四棱锥SABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是(A)ACSB(B)AB平面SCD(C)SA与平面SBD所成的角等于SC与平面SBD所成的角(D)AB与SC所成的角等于DC与SA所成的角【答案】D16.(
5、辽宁理12)。已知球的直径SC=4,A,B是该球球面上的两点,AB=,则棱锥SABC的体积为(A) (B)(C)(D)1【答案】C17(上海理17)设是空间中给定的5个不同的点,则使成立的点的个数为 A0 B1 C5 D10 【答案】B二、填空题18.(上海理7)若圆锥的侧面积为,底面积为,则该圆锥的体积为 。【答案】19.(四川理15)如图,半径为R的球O中有一内接圆柱当圆柱的侧面积最大是,求的表面积与改圆柱的侧面积之差是 【答案】【解析】时,则20.(辽宁理15)一个正三棱柱的侧棱长和底面边长相等,体积为,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是 【答案】21.
6、(天津理10)一个几何体的三视图如右图所示(单位:),则该几何体的体积为_【答案】22.(全国新课标理15)。已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=,则棱锥O-ABCD的体积为_【答案】23.(湖北理14)如图,直角坐标系所在的平面为,直角坐标系(其中轴一与轴重合)所在的平面为,。()已知平面内有一点,则点在平面内的射影的坐标为 (2,2) ;()已知平面内的曲线的方程是,则曲线在平面内的射影的方程是 。【答案】24.(福建理12)三棱锥P-ABC中,PA底面ABC,PA=3,底面ABC是边长为2的正三角形,则三棱锥P-ABC的体积等于_。【答案】三、解答题25.
7、(江苏16)如图,在四棱锥中,平面PAD平面ABCD,AB=AD,BAD=60,E、F分别是AP、AD的中点求证:(1)直线EF平面PCD;(2)平面BEF平面PAD本题主要考查直线与平面、平面与平面的位置关系,考察空间想象能力和推理论证能力。满分14分。证明:(1)在PAD中,因为E、F分别为AP,AD的中点,所以EF/PD.又因为EF平面PCD,PD平面PCD,所以直线EF/平面PCD.(2)连结DB,因为AB=AD,BAD=60,所以ABD为正三角形,因为F是AD的中点,所以BFAD.因为平面PAD平面ABCD,BF平面ABCD,平面PAD平面ABCD=AD,所以BF平面PAD。又因为B
8、F平面BEF,所以平面BEF平面PAD.26.(安徽理17)如图,为多面体,平面与平面垂直,点在线段上,OAB,,,都是正三角形。()证明直线;(II)求棱锥FOBED的体积。本题考查空间直线与直线,直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算等基本知识,考查空间想象能力,推理论证能力和运算求解能力.(I)(综合法)证明:设G是线段DA与EB延长线的交点. 由于OAB与ODE都是正三角形,所以=,OG=OD=2,同理,设是线段DA与线段FC延长线的交点,有又由于G和都在线段DA的延长线上,所以G与重合.=在GED和GFD中,由=和OC,可知B和C分别是GE和GF的中点
9、,所以BC是GEF的中位线,故BCEF.(向量法)过点F作,交AD于点Q,连QE,由平面ABED平面ADFC,知FQ平面ABED,以Q为坐标原点,为轴正向,为y轴正向,为z轴正向,建立如图所示空间直角坐标系.由条件知则有所以即得BCEF. (II)解:由OB=1,OE=2,而OED是边长为2的正三角形,故所以过点F作FQAD,交AD于点Q,由平面ABED平面ACFD知,FQ就是四棱锥FOBED的高,且FQ=,所以27.(北京理16) 如图,在四棱锥中,平面,底面是菱形,.()求证:平面()若求与所成角的余弦值;()当平面与平面垂直时,求的长.证明:()因为四边形ABCD是菱形,所以ACBD.又
10、因为PA平面ABCD.所以PABD.所以BD平面PAC.()设ACBD=O.因为BAD=60,PA=PB=2,所以BO=1,AO=CO=.如图,以O为坐标原点,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0).所以设PB与AC所成角为,则()由()知设P(0,t)(t0),则设平面PBC的法向量,则所以令则所以同理,平面PDC的法向量因为平面PCB平面PDC,所以=0,即解得所以PA=28.(福建理20) 如图,四棱锥P-ABCD中,PA底面ABCD,四边形ABCD中,ABAD,AB+AD=4,CD=,(I)求证:平面PAB平面PAD;(II)设AB=A
11、P (i)若直线PB与平面PCD所成的角为,求线段AB的长; (ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由。本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想,满分14分。解法一:(I)因为平面ABCD,平面ABCD,所以,又所以平面PAD。又平面PAB,所以平面平面PAD。(II)以A为坐标原点,建立空间直角坐标系Axyz(如图)在平面ABCD内,作CE/AB交AD于点E,则在中,DE=,设AB=AP=t,则B(t,0,0)
12、,P(0,0,t)由AB+AD=4,得AD=4-t,所以,(i)设平面PCD的法向量为,由,得取,得平面PCD的一个法向量,又,故由直线PB与平面PCD所成的角为,得解得(舍去,因为AD),所以(ii)假设在线段AD上存在一个点G,使得点G到点P,B,C,D的距离都相等,设G(0,m,0)(其中)则,由得,(2)由(1)、(2)消去t,化简得(3)由于方程(3)没有实数根,所以在线段AD上不存在一个点G,使得点G到点P,C,D的距离都相等。从而,在线段AD上不存在一个点G,使得点G到点P,B,C,D的距离都相等。解法二:(I)同解法一。(II)(i)以A为坐标原点,建立空间直角坐标系Axyz(
13、如图)在平面ABCD内,作CE/AB交AD于E,则。在平面ABCD内,作CE/AB交AD于点E,则在中,DE=,设AB=AP=t,则B(t,0,0),P(0,0,t)由AB+AD=4,得AD=4-t,所以,设平面PCD的法向量为,由,得取,得平面PCD的一个法向量,又,故由直线PB与平面PCD所成的角为,得解得(舍去,因为AD),所以(ii)假设在线段AD上存在一个点G,使得点G到点P,B,C,D的距离都相等,由GC=CD,得,从而,即设在中,这与GB=GD矛盾。所以在线段AD上不存在一个点G,使得点G到点B,C,D的距离都相等,从而,在线段AD上不存在一个点G,使得点G到点P,B,C,D的距
14、离都相等。29.(广东理18) 如图5在椎体P-ABCD中,ABCD是边长为1的棱形,且DAB=60,,PB=2,E,F分别是BC,PC的中点(1) 证明:AD 平面DEF;(2) 求二面角P-AD-B的余弦值法一:(1)证明:取AD中点G,连接PG,BG,BD。因PA=PD,有,在中,有为等边三角形,因此,所以平面PBG又PB/EF,得,而DE/GB得AD DE,又,所以AD 平面DEF。 (2),为二面角PADB的平面角,在在法二:(1)取AD中点为G,因为又为等边三角形,因此,从而平面PBG。延长BG到O且使得PO OB,又平面PBG,PO AD,所以PO 平面ABCD。以O为坐标原点,
15、菱形的边长为单位长度,直线OB,OP分别为轴,z轴,平行于AD的直线为轴,建立如图所示空间直角坐标系。设由于得平面DEF。 (2)取平面ABD的法向量设平面PAD的法向量由取30.(湖北理18) 如图,已知正三棱柱的各棱长都是4,是的中点,动点在侧棱上,且不与点重合()当=1时,求证:;()设二面角的大小为,求的最小值本小题主要考查空间直线与平面的位置关系和二面角等基础知识,同时考查空间想象能力、推理论证能力和运算求解能力。(满分12分) 解法1:过E作于N,连结EF。 (I)如图1,连结NF、AC1,由直棱柱的性质知, 底面ABC侧面A1C。 又度面侧面A,C=AC,且底面ABC, 所以侧面
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学试题 分类 整理 汇编 立体几何
限制150内