MOSFET金氧场效应晶体管.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《MOSFET金氧场效应晶体管.doc》由会员分享,可在线阅读,更多相关《MOSFET金氧场效应晶体管.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流MOSFET金氧场效应晶体管.精品文档.MOSFET金属-氧化层-半导体-场效晶体管,简称金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一种可以广泛使用在模拟电路与数字电路的场效晶体管(field-effect transistor)。MOSFET依照其“通道”的极性不同,可分为n-type与p-type的MOSFET,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOS FET、PMOS FET、nMOSFET、pMOSFET等。目录MOS
2、FET的结构 MOSFET的工作原理 详细信息与相关发展 MOSFET与IGBT的对比编辑本段MOSFET的结构图1是典型平面N沟道增强型MOSFET的剖面图。它用一块P型硅半导体材料作衬底(图la),在其面上扩散了两个N型区(图lb),再在上面覆盖一层二氧化硅(SiO)绝缘层(图lc),最后在N区上方用腐蚀的方法做成两个孔,用金属化的方法分别在绝缘层上及两个孔内做成三个电极:G(栅极)、S(源极)及D(漏极),如图1d所示。 苏州工职院机电07C3-CZW-手打从图1中可以看出栅极G与漏极D及源极S是绝缘的,D与S之间有两个PN结。一般情况下,衬底与源极在内部连接在一起。 图3是N沟道增强型
3、MOSFET的基本结构图。为了改善某些参数的特性,如提高工作电流、提高工作电压、降低导通电阻、提高开关特性等有不同的结构及工艺,构成所谓VMOS、DMOS、TMOS等结构。图2是一种N沟道增强型功率MOSFET的结构图。虽然有不同的结构,但其工作原理是相同的,这里就不一一介绍了。 编辑本段MOSFET的工作原理要使增强型N沟道MOSFET工作,要在G、S之间加正电压VGS及在D、S之间加正电压VDS,则产生正向工作电流ID。改变VGS的电压可控制工作电流ID。如图3所示(上面)。 若先不接VGS(即VGS=0),在D与S极之间加一正电压VDS,漏极D与衬底之间的PN结处于反向,因此漏源之间不能
4、导电。如果在栅极G与源极S之间加一电压VGS。此时可以将栅极与衬底看作电容器的两个极板,而氧化物绝缘层作为电容器的介质。当加上VGS时,在绝缘层和栅极界面上感应出正电荷,而在绝缘层和P型衬底界面上感应出负电荷(如图3)。这层感应的负电荷和P型衬底中的多数载流子(空穴)的极性相反,所以称为“反型层”,这反型层有可能将漏与源的两N型区连接起来形成导电沟道。当VGS电压太低时,感应出来的负电荷较少,它将被P型衬底中的空穴中和,因此在这种情况时,漏源之间仍然无电流ID。当VGS增加到一定值时,其感应的负电荷把两个分离的N区沟通形成N沟道,这个临界电压称为开启电压(或称阈值电压、门限电压),用符号VT表
5、示(一般规定在ID=10uA时的VGS作为VT)。当VGS继续增大,负电荷增加,导电沟道扩大,电阻降低,ID也随之增加,并且呈较好线性关系,如图4所示。此曲线称为转换特性。因此在一定范围内可以认为,改变VGS来控制漏源之间的电阻,达到控制ID的作用。 苏州工职院机电07C3-CZW-手打由于这种结构在VGS=0时,ID=0,称这种MOSFET为增强型。另一类MOSFET,在VGS=0时也有一定的ID(称为IDSS),这种MOSFET称为耗尽型。它的结构如图5所示,它的转移特性如图6所示。VP为夹断电压(ID=0)。 耗尽型与增强型主要区别是在制造SiO2绝缘层中有大量的正离子,使在P型衬底的界
6、面上感应出较多的负电荷,即在两个N型区中间的P型硅内形成一N型硅薄层而形成一导电沟道,所以在VGS=0时,有VDS作用时也有一定的ID(IDSS);当VGS有电压时(可以是正电压或负电压),改变感应的负电荷数量,从而改变ID的大小。VP为ID=0时的-VGS,称为夹断电压。 编辑本段详细信息与相关发展从目前的角度来看MOSFET的命名,事实上会让人得到错误的印象。因为MOSFET里代表“metal”的第一个字母M在当下大部分同类的元件里是不存在的。早期MOSFET的栅极(gate electrode)使用金属作为其材料,但随著半导体技术的进步,现代的MOSFET栅极早已用多晶硅取代了金属。 M
7、OSFET在概念上属于“绝缘栅极场效晶体管”(Insulated-Gate Field Effect Transistor, IGFET),而IGFET的栅极绝缘层有可能是其他物质而非MOSFET使用的氧化层。有些人在提到拥有多晶硅栅极的场效晶体管元件时比较喜欢用IGFET,但是这些IGFET多半指的是MOSFET。 MOSFET里的氧化层位于其通道上方,依照其操作电压的不同,这层氧化物的厚度仅有数十至数百埃(Å)不等,通常材料是二氧化硅(silicon dioxide, SiO2),不过有些新的进阶制程已经可以使用如氮氧化硅(silicon oxynitride, SiON)做为
8、氧化层之用。 今日半导体元件的材料通常以硅(silicon)为首选,但是也有些半导体公司发展出使用其他半导体材料的制程,当中最著名的例如IBM使用硅与锗(germanium)的混合物所发展的硅锗制程(silicon-germanium process, SiGe process)。而可惜的是很多拥有良好电性的半导体材料,如砷化镓(gallium arsenide, GaAs),因为无法在表面长出品质够好的氧化层,所以无法用来制造MOSFET元件。 当一个够大的电位差施于MOSFET的栅极与源极(source)之间时,电场会在氧化层下方的半导体表面形成感应电荷,而这时所谓的“反型层”(inver
9、sion channel)就会形成。通道的极性与其漏极(drain)与源极相同,假设漏极和源极是n-type,那么通道也会是n-type。通道形成后,MOSFET即可让电流通过,而依据施于栅极的电压值不同,可由MOSFET的通道流过的电流大小亦会受其控制而改变。 电路符号 常用于MOSFET的电路符号有很多种变化,最常见的设计是以一条直线代表通道,两条和通道垂直的线代表源极与漏极,左方和通道平行而且较短的线代表栅极,如下图所示。有时也会将代表通道的直线以破折线代替,以区分增强型MOSFET(enhancement mode MOSFET)或是耗尽型MOSFET(depletion mode M
10、OSFET)。 由于积体电路芯片上的MOSFET为四端元件,所以除了栅极、源极、漏极外,尚有一基极(Bulk或是Body)。MOSFET电路符号中,从通道往右延伸的箭号方向则可表示此元件为n-type或是p-type的MOSFET。箭头方向永远从P端指向N端,所以箭头从通道指向基极端的为p-type的MOSFET,或简称PMOS(代表此元件的通道为p-type);反之若箭头从基极指向通道,则代表基极为p-type,而通道为n-type,此元件为n-type的MOSFET,简称NMOS。在一般分布式MOSFET元件(discrete device)中,通常把基极和源极接在一起,故分布式MOSFE
11、T通常为三端元件。而在积体电路中的MOSFET通常因为使用同一个基极(common bulk),所以不标示出基极的极性,而在PMOS的栅极端多加一个圆圈以示区别。 MOSFET的操作原理 MOSFET的核心:金属氧化层半导体电容 金属氧化层半导体结构MOSFET在结构上以一个金属氧化层半导体的电容为核心(如前所述,今日的MOSFET多半以多晶硅取代金属作为其栅极材料),氧化层的材料多半是二氧化硅,其下是作为基极的硅,而其上则是作为栅极的多晶硅。这样子的结构正好等于一个电容器(capacitor),氧化层扮演电容器中介电质(dielectric material)的角色,而电容值由氧化层的厚度与
12、二氧化硅的介电常数(dielectric constant)来决定。栅极多晶硅与基极的硅则成为MOS电容的两个端点。 当一个电压施加在MOS电容的两端时,半导体的电荷分布也会跟著改变。考虑一个p-type的半导体(电洞浓度为NA)形成的MOS电容,当一个正的电压VGB施加在栅极与基极端(如图)时,电洞的浓度会减少,电子的浓度会增加。当VGB够强时,接近栅极端的电子浓度会超过电洞。这个在p-type半导体中,电子浓度(带负电荷)超过电洞(带正电荷)浓度的区域,便是所谓的反转层(inversion layer)。 MOS电容的特性决定了MOSFET的操作特性,但是一个完整的MOSFET结构还需要一
13、个提供多数载子(majority carrier)的源极以及接受这些多数载子的漏极。 MOSFET的结构 一个NMOS晶体管的立体截面图左图是一个n-type MOSFET(以下简称NMOS)的截面图。如前所述,MOSFET的核心是位于中央的MOS电容,而左右两侧则是它的源极与漏极。源极与漏极的特性必须同为n-type(即NMOS)或是同为p-type(即PMOS)。右图NMOS的源极与漏极上标示的“N+”代表著两个意义:(1)N代表掺杂(doped)在源极与漏极区域的杂质极性为N;(2)“+”代表这个区域为高掺杂浓度区域(heavily doped region),也就是此区的电子浓度远高于
14、其他区域。在源极与漏极之间被一个极性相反的区域隔开,也就是所谓的基极(或称基体)区域。如果是NMOS,那么其基体区的掺杂就是p-type。反之对PMOS而言,基体应该是n-type,而源极与漏极则为p-type(而且是重掺杂的P+)。基体的掺杂浓度不需要如源极或漏极那么高,故在右图中没有“+”。 对这个NMOS而言,真正用来作为通道、让载子通过的只有MOS电容正下方半导体的表面区域。当一个正电压施加在栅极上,带负电的电子就会被吸引至表面,形成通道,让n-type半导体的多数载子电子可以从源极流向漏极。如果这个电压被移除,或是放上一个负电压,那么通道就无法形成,载子也无法在源极与漏极之间流动。
15、假设操作的对象换成PMOS,那么源极与漏极为p-type、基体则是n-type。在PMOS的栅极上施加负电压,则半导体上的电洞会被吸引到表面形成通道,半导体的多数载子电洞则可以从源极流向漏极。假设这个负电压被移除,或是加上正电压,那么通道无法形成,一样无法让载子在源极和漏极间流动。 特别要说明的是,源极在MOSFET里的意思是“提供多数载子的来源”。对NMOS而言,多数载子是电子;对PMOS而言,多数载子是电洞。相对的,漏极就是接受多数载子的端点。 MOSFET的操作模式 NMOS的漏极电流与漏极电压之间在不同VGS Vth的关系 MOSFET在线性区操作的截面图 MOSFET在饱和区操作的截
16、面图依照在MOSFET的栅极、源极,与漏极等三个端点施加的“偏压”(bias)不同,一个常见的加强型(enhancement mode)n-type MOSFET有下列三种操作区间: 截止或次临限区(cut-off or sub-threshold region) 当栅极和源极间的电压VGS(G代表栅极,S代表源极)小于一个称为临界电压(threshold voltage, Vth)的值时,这个MOSFET是处在“截止”(cut-off)的状态,电流无法流过这个MOSFET,也就是这个MOSFET不导通。 但事实上当VGS在一些拥有大量MOSFET的积体电路产品,如DRAM,次临限电流往往会造
17、成额外的能量或功率消耗。 三极或线性区(triode or linear region) 当VGSVth、且VDS编辑 MOSFET在电子电路上应用的优势 MOSFET在1960年由贝尔实验室(Bell Lab.)的D. Kahng和 Martin Atalla首次实作成功,这种元件的操作原理和1947年萧克莱(William Shockley)等人发明的双载子晶体管(Bipolar Junction Transistor, BJT)截然不同,且因为制造成本低廉与使用面积较小、高整合度的优势,在大型积体电路(Large-Scale Integrated Circuits, LSI)或是超大型积
18、体电路(Very Large-Scale Integrated Circuits, VLSI)的领域里,重要性远超过BJT。 近年来由于MOSFET元件的性能逐渐提升,除了传统上应用于诸如微处理器、微控制器等数位讯号处理的场合上,也有越来越多类比讯号处理的积体电路可以用MOSFET来实现,以下分别介绍这些应用。 数位电路 数位科技的进步,如微处理器运算效能不断提升,带给深入研发新一代MOSFET更多的动力,这也使得MOSFET本身的操作速度越来越快,几乎成为各种半导体主动元件中最快的一种。MOSFET在数位讯号处理上最主要的成功来自CMOS逻辑电路的发明,这种结构最大的好处是理论上不会有静态的
19、功率损耗,只有在逻辑门(logic gate)的切换动作时才有电流通过。CMOS逻辑门最基本的成员是CMOS反相器(inverter),而所有CMOS逻辑门的基本操作都如同反相器一样,同一时间内必定只有一种晶体管(NMOS或是PMOS)处在导通的状态下,另一种必定是截止状态,这使得从电源端到接地端不会有直接导通的路径,大量节省了电流或功率的消耗,也降低了积体电路的发热量。 MOSFET在数位电路上应用的另外一大优势是对直流(DC)讯号而言,MOSFET的栅极端阻抗为无限大(等效于开路),也就是理论上不会有电流从MOSFET的栅极端流向电路里的接地点,而是完全由电压控制栅极的形式。这让MOSFE
20、T和他们最主要的竞争对手BJT相较之下更为省电,而且也更易于驱动。在CMOS逻辑电路里,除了负责驱动芯片外负载(off-chip load)的驱动器(driver)外,每一级的逻辑门都只要面对同样是MOSFET的栅极,如此一来较不需考虑逻辑门本身的驱动力。相较之下,BJT的逻辑电路(例如最常见的TTL)就没有这些优势。MOSFET的栅极输入电阻无限大对于电路设计工程师而言亦有其他优点,例如较不需考虑逻辑门输出端的负载效应(loading effect)。 模拟电路 有一段时间,MOSFET并非模拟电路设计工程师的首选,因为模拟电路设计重视的性能参数,如晶体管的转导(transconductan
21、ce)或是电流的驱动力上,MOSFET不如BJT来得适合模拟电路的需求。但是随著MOSFET技术的不断演进,今日的CMOS技术也已经可以符合很多模拟电路的规格需求。再加上MOSFET因为结构的关系,没有BJT的一些致命缺点,如热破坏(thermal runaway)。另外,MOSFET在线性区的压控电阻特性亦可在积体电路里用来取代传统的多晶硅电阻(poly resistor),或是MOS电容本身可以用来取代常用的多晶硅绝缘体多晶硅电容(PIP capacitor),甚至在适当的电路控制下可以表现出电感(inductor)的特性,这些好处都是BJT很难提供的。也就是说,MOSFET除了扮演原本晶
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- MOSFET 场效应 晶体管
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内