《spss因素分析教程.doc》由会员分享,可在线阅读,更多相关《spss因素分析教程.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流spss因素分析教程.精品文档.二、利用SPSS对量表进行因素分析【例6-9】现要对远程学习者对教育技术资源的了解和使用情况进行了解,设计一个里克特量表,如表6-27所示。将该量表发放给20人回答,假设回收后的原始数据如表6-28所示。操作步骤: 录入数据 定义变量“A1”、“A2”、“A3”、“A5”、“A6”、“A7”、“A8”、“A9”、“A10”,并按照表 输入数据,如图6-33所示。 因素分析(1)选择“AnalyzeData ReductionFactor”命令,弹出“Factor Analyze”对话框,将变量“A1”到“A10
2、”选入“Variables”框中,如图6-34所示。(2)设置描述性统计量单击图6-34对话框中的“Descriptives”按钮,弹出“Factor Analyze:Descriptives”(因素分析:描述性统计量)对话框,如图6-35所示。 “Statistics”(统计量)对话框A “Univariate descriptives”(单变量描述性统计量):显示每一题项的平均数、标准差。B “Initial solution”(未转轴之统计量):显示因素分析未转轴前之共同性、特征值、变异数百分比及累积百分比。 “Correlation Matric”(相关矩阵)选项框A “Coeffic
3、ients”(系数):显示题项的相关矩阵B “Significance levels”(显著水准):求出前述相关矩阵地显著水准。C “Determinant”(行列式):求出前述相关矩阵地行列式值。D “KMO and Bartletts test of sphericity”(KMO与Bartlett的球形检定):显示KMO抽样适当性参数与Bartletts的球形检定。E “Inverse”(倒数模式):求出相关矩阵的反矩阵。F “Reproduced”(重制的):显示重制相关矩阵,上三角形矩阵代表残差值;而主对角线及下三角形代表相关系数。G “Anti-image”(反映像):求出反映像的
4、共变量及相关矩阵。在本例中,选择“Initial solution”与“KMO and Bartletts test of sphericity”二项,单击“Continue”按钮确定。(3)设置对因素的抽取选项单击图6-34对话框中的“Extraction”按钮,弹出“Factor Analyze:Extraction”(因素分析:抽取)对话框,如图6-36所示。 “Method”(方法)选项框:下拉式选项内有其中抽取因素的方法:A “Principal components”法:主成份分析法抽取因素,此为SPSS默认方法。B “Unweighted least squares”法:未加权最
5、小平方法。C “Generalized least square”法:一般化最小平方法。D “Maximum likelihood”法:最大概似法。E “Principal-axis factoring”法:主轴法。F “Alpha factoring”法:因素抽取法。G “Image factoring”法:映像因素抽取法。 “Analyze”(分析)选项框A “Correlation matrix”(相关矩阵):以相关矩阵来抽取因素B “Covariance matrix”(共变异数矩阵):以共变量矩阵来抽取因素。 “Display”(显示)选项框A “Unrotated factor s
6、olution”(未旋转因子解):显示未转轴时因素负荷量、特征值及共同性。B “Scree plot”(陡坡图):显示陡坡图。 “Extract”(抽取)选项框A “Eigenvalues over”(特征值):后面的空格默认为1,表示因素抽取时,只抽取特征值大于1者,使用者可随意输入0至变量总数之间的值。B “Number of factors”(因子个数):选取此项时,后面的空格内输入限定的因素个数。在本例中,设置因素抽取方法为“Principal components”,选取“Correlation matrix”、“Unrotated factor solution”、“Princip
7、al components”选项,在抽取因素时限定在特征值大于1者,即SPSS的默认选项。单击“Continue”按钮确定。(4)设置因素转轴单击图6-34对话框中的“Rotation”按钮,弹出“Factor Analyze:Rotation”(因素分析:旋转)对话框,如图6-37所示。 “Method”(方法)选项方框内六种因素转轴方法:A “None”:不需要转轴B “Varimax”:最大变异法,属正交转轴法之一。C “Quartimax”:四次方最大值法,属正交转轴法之一。D “Equamax”:相等最大值法,属正交转轴法之一。E “Direct Oblimin”:直接斜交转轴法,属
8、斜交转轴法之一。F “Promax”:Promax转轴法,属斜交转轴法之一。 “Display”(显示)选项框:A “Rotated solution”(转轴后的解):显示转轴后的相关信息,正交转轴显示因素组型矩阵及因素转换矩阵;斜交转轴则显示因素组型、因素结构矩阵与因素相关矩阵。B “Loading plots”(因子负荷量):绘出因素的散步图。 “Maximum Iterations for Convergence”:转轴时之行的叠代最多次数,后面默认得数字为25,表示算法之行转轴时,执行步骤的次数上限。在本例中,选择“Varimax”、“Rotated solution”二项。研究者要选
9、择“Rotated solution”选项,才能显示转轴后的相关信息。单击“Continue”按钮确定。(5)设置因素分数单击图6-34对话框中的“Scores”按钮,弹出“Factor Analyze:Factor Scores”(因素分析:因素分数)对话框,如图6-38所示。 “Save as variable”(因素存储变量)框勾选时可将新建立的因素分数存储至数据文件中,并产生新的变量名称(默认为fact_1、fact_2、fact_3、fact_4等)。在“Method”框中表示计算因素分数的方法有三种:A “Regression”:使用回归法。B “Bartlett”:使用Bartl
10、ette法C “Anderson-Robin”:使用Anderson-Robin法。 “Display factor coefficient matrix”(显示因素分数系数矩阵)选项勾选时可显示因数分数系数矩阵。在本例中,取默认值。单击“Continue”按钮确定。(6)设置因素分析的选项单击图6-34对话框中的“Options”按钮,弹出“Factor Analyze:Options”(因素分析:选项)对话框,如图6-39所示。“Missing Values”(遗漏值)选项框:遗漏值的处理方式。A “Exclude cases listwise”(完全排除遗漏值):观察值在所有变量中没有遗
11、漏值者才加以分析。B “Exclude cases pairwise”(成对方式排除):在成对相关分析中出现遗漏值得观察值舍弃。C “Replace with mean”(用平均数置换):以变量平均值取代遗漏值。“Coefficient Display Format”(系数显示格式)选项框:因素负荷量出现的格式。A “Sorted by size”(依据因素负荷量排序):根据每一因素层面的因素负荷量的大小排序。B “Suppress absolute values less than”(绝对值舍弃的下限):因素负荷量小于后面数字者不被显示,默认的值为0.1。在本例中,选择“Exclude ca
12、ses listwise”、“Sorted by size”二项,并勾选“Suppress absolute values less than”,其后空格内的数字不用修改,默认为0.1。如果研究者要呈现所有因素负荷量,就不用选取“Suppress absolute values less than”选项。在例题中为了让研究者明白此项的意义,才勾选了此项,正式的研究中应呈现题项完整的因素负荷量较为适宜。单击“Continue”按钮确定。设置完所有的选项后,单击“OK”按钮,输出结果。 结果分析(1)KMO及Bartlett检验如图6-40所示,显示KMO及Bartlett检验结果。KMO是Kai
13、ser-Meyer-Olkin的取样适当性量数,当KMO值愈大时,表示变量间的共同因素愈多,愈适合进行因素分析,根据专家Kaiser(1974)观点,如果KMO的值小于0.5时,较不宜进行因素分析,此处的KMO值为0.695,表示适合因素分析。此外,从Bartletts球形检验的 值为234.438,自由度为45,达到显著,代表母群体的相关矩阵间有共同因素存在,适合进行因素分析。(2)共同性如图6-41所示,显示因素间的共同性结果。共同性中显示抽取方法威主成份分析法,最右边一栏为题项的共同性。(3)陡坡图如图6-42所示,显示因素的陡坡图。从陡坡图中,可以看出从第三个因素以后,坡线甚为平坦,因
14、而以保留3个因素较为适宜。(4)整体解释的变异数未转轴前的数据如图6-43所示,显示的是未转轴前整体解释的变异数。从图中可以看出,左边10个成份因素的特征值总和等于10。解释变异量为特征值除以题项数,如第一个特征值得解释变异量为6.35810 63.579。将左边10个成份的特征值大于1的列于右边。特征值大于1的共有三个,这也是因素分析时所抽出的共同因素数。由于特征值是由大到小排列,所以第一个共同因素的解释变异量通常是最大者,其次是第二个1.547,再是第三个1.032。转轴后的特征值为4.389、3.137、1.411,解释变异量为43.885、31.372、14.108,累积的解释变异量为
15、43.885、75.257、89.366。转轴后的特征值不同于转轴前的特征值。(5)未转轴的因素矩阵如图6-44所示,显示的是未转轴的因素矩阵。从图中可以看出,有3个因素被抽取,并且因素负荷量小鱼0.1的未被显示。(6)转轴后的因素矩阵如图6-45所示,显示了转轴后的因素矩阵。 从图中可以看出A1、A8、A6、A5、A4为因素一,A10、A9、A7为因素二,A3、A2为因素三。题项在其所属的因素层面顺序是按照因素负荷量的高低排列。(7)因素转换矩阵如图6-46所示,显示了因素转换矩阵。它是在“Factor Analysis:Rotation”对话框中“Display”选项框中选择“Rotated Solution”选项框以后生成该表。 结果说明根据因素的特征值和旋转后的因素矩阵,采用了主成份分析法抽取出3个因素作为共同因素,并使用因素转轴方法中的Varimax最大变异法,转轴后去掉了因素负荷量小于0.1的的系数,按照从大到小的顺序进行排列,使得变量与因素的关系豁然明了。对其作如表6-29 所示的因素分析摘要表。转轴后的特征值为4.389、3.137、1.411,解释变异量为43.885、31.372、14.108,累积的解释变异量为43.885、75.257、89.366。转轴后的特征值不同于转轴前的特征值。
限制150内