世界特高压交流输电技术工程一览(图.doc
《世界特高压交流输电技术工程一览(图.doc》由会员分享,可在线阅读,更多相关《世界特高压交流输电技术工程一览(图.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流世界特高压交流输电技术工程一览(图.精品文档.世界特高压交流输电技术工程一览(图)关键词: 特高压交流输电输电工程北极星智能电网在线讯:美国、前苏联、日本和意大利都曾建成交流特高压试验线路,进行了大量的交流特高压输电技术研究和试验,最终只有前苏联和日本建设了交流特高压线路。一、前苏联1150kV工程前苏联1000kV级交流系统的额定电压(标称电压)1150kV,最高电压1200kV,是世界上已有工程中最高者。1、工程概况20世纪70年代,前苏联开始1000kV特高压交流输变电技术的研究工作,1985年8月建成了埃基巴斯图兹科克切塔夫线路(49
2、7km)以及2座1 150kV变电站(升压站),并按照系统额定电压1150kV投人工业运行。1988年8月建成了科克切塔夫库斯坦奈线路(410km)以及1座1150kV变电站,该线路也按1150kV投入工业运行。一直到1990年为止,前苏联有907km长的1150kV输电线路和2座1150kV变电站、1座1150V升压站按1150kV电压运行了5年之久。之后,前苏联又分别建设了库斯坦奈恰尔连滨斯克线路(328km)以及1座1150kV变电站;埃基巴斯图兹巴尔纽尔依塔特线路1115km和1座1150kV变电站。综上所述,前苏联从1985年8月至今共建成2350km 1150kV输电线路和4座11
3、50kV变电站(其中1座为升压站)。其中有907km线路和3座150kV变电站(其中1座为升压站)从1985年1990年按系统额定电压1150kV运行了5年之久。之后由于前苏联经济上的解体和政治原因,卡札克斯坦中央调度局将全线降压为500kV电压等级运行,在整个运行期间,过电压保护系统的设计并不需要进行修改,至今运行情况良好。2、1150kV变电站(1)建设规模前苏联已建成4座1150kV变电站,其中有代表性的是科克切塔夫1150kV变电站,包括1150kV和500kV两级电压等级,1150kV部分建规模为:2回1150kV出线、2回备用出线;2组1150/500kV 200MVA主变压器;2
4、组900Mvar1150/kV并联电抗器。该变电站1985年8月建成后按系统额定电压1150kV运行了5年之久,1990年以后降压为500kV运行至今,为以后建设的1150kV变电站积累了很多施工、设备调试以及运行的经验,并进行了大量的试验和测试工作。日常运行和紧急事故模拟试验研究结果表明,在绝大多数情况下电系统实际的操作过电压水平不会超过1.6p.u.,因此前苏联后期1150kV系统的过电压设计,从原来操作过电压1.8p.u.降到1.6p.u.。(2)电气主接线1150kV配电装置采用一种新型的双母线双断路器电气主接线,即每个出线回路采用双断路器,主变压进线回路不装断路器直接接人母线。这种主
5、接线主要是考虑输电线路的故障率大于主变压器故障率,尽管主变压器回路不装断路器,如果主变压器故障相当于母线故障,但是苏联1150 kV主变压器十分可靠(查波罗什变压器厂生产19台单相667MVA 1150kV主变压器运行了185台年,故障率为0),发生上述这种情况的概率是很小的。而在故障率相对高一些的出线回路安装2台断路器分别接人两条主母线可以提高运行的灵活性和可靠性。同时由于2个主变压器进线回路不装断路器,应尽在出线回路安装2台断路器,但是整个1150kV配电装置的断路器数量并没有增加(本期工程)。因此前苏联通过技术经济比较在1150kV不采用一个半断路器接线,而要用新型的双母线双断路器接线,
6、这种做法值得我们在国内1000kV交流变电站设计时借鉴。(3)主要电气设备前苏联4个1150kV变电站的1150kV配电装置都采用屋外中型布置方案,安装了常规敞开瓷柱式1150kV电气设备,包括4柱8断口空气断路器、双柱垂直开启或隔离开关等各种电气设备。1988年秋动工建设1000千伏特高压线路。1992年4月28日建成从西群马开关站到东山梨变电站的西群马干线138公里线路,1993年10月建成从柏崎刈羽核电站到西群马开关站的南新泻干线中49公里的特高压线路部分,两段特高压线路全长187公里,目前均以500千伏电压降压运行。1999年完成东西走廊从南磐城开关站到东群马开关站的南磐城干线194公
7、里和从东群马开关站到西群马开关站的东群马干线44公里的建设,两段特高压线路全长238公里。目前日本共建成特高压线路426公里,由于国土狭小,日本特高压线路全部采用双回同杆并架方式。二、日本1000kV工程1、工程概况日本1000kV电力系统集中在东京电力公司,1988年开始建设1000kV输变电工程,1999年建成2条总长度430km的1 000 kV输电线路和1座1000 kV变电站,第1条是从北部日本海沿岸原子能发电厂到南部东京地区的1000kV输电线路,称为南北线(长度190km),南新泻干线、西群马干线;第2条是联接太平洋沿岸各发电厂的1000kV输电线路,称为东西线路(长度240 k
8、m),东群马干线、南磬城干线,如图所示。此外日本还建成了1座新楱名1100kV变电站,所有的1000kV线路和变电站从建成后都一直降压为500kV电压等级运行,考虑配合太平洋沿岸和东北地区原子能发电厂的建设拟升压至额定电压1000kV运行,但是由负荷增长停止不前,电源建设和1000kV升压计划也大幅推迟,预计在21世纪10年代后期才能升压至1000kV运行。2、1100kV变电站(1)建设规模日本已在东京电力公司建成1座新楱名1000kV变电站,其建设规模为:1000kV 4回出线,4台3000MCA 1000/500kV主变压器,不安装并联电抗器。(2)电气主接线1000kV配电装置采用日本
9、在500kV变电站广泛使用的双母线双分段电气主接线(采用SF6断路器分段)。电气主接线中避雷器MOA配置原则经过详细的雷电侵入波过电压计算分析后采用2+1+2的方案,即每个出线回路加2组MOA,每个主变进线回路加1组MOA,每四分之一段母线加2组MOA,其结论是虽然MOM总数量比常规1+1+1方案有所增加,增加了MOA部分的投资,但是采用本方案可以将电气设备绝缘水平从2900kV(雷电冲击)下降至2250kV,使电气设备的投资下降很多,其最后综合总投资比常规方案可以节省9%。日本1000kV不采用一个半断路器接线,其独特的多避雷器配置设计值得我国在1000kV变电站设计时参考。(3)主变压器日
10、本由三大制造厂三菱、日立和东芝公司分别各生产一台单相1000MVA 1000kV主变压器,安装在新楱名1000kV变电站。日本的1000千伏特高压交流输电技术研究始于1973年。引发特高压输电技术研究的原因主要有:上世纪70年代,日本经济高速增长,电力需求预测估计年增长率为6%10%;将新泻、福岛等地核电输往以东京为中心的首都圈(远距离输电、输电走廊紧张);如果仍采用500千伏输电则首都圈的短路电流将超过63千安;解决未来远距离输送电力的稳定问题。上世纪90年代,日本建设了427千米1000千伏特高压交流同杆并架输电线路(目前以500千伏电压运行)和新榛名特高压设备实证实验场(一直到今天还在通
11、电状态)。曾计划于21世纪初升压到特高压输电,但至今仍未升压。电力需求增长催生特高压就日本特高压输电的前景问题,笔者与东京电力公司技术部长财满英一、日本电力中央研究所电力技术研究所所长藤波秀行、东芝公司电力事业部原特高压项目负责人村山康文、东芝公司浜川崎工厂(变压器、开关、避雷器等设备的主要制造点)总工程师池田九利、东芝公司电力事业部原避雷器部部长菅雅弘等专家进行过多次交流,他们一致认为:日本从未想过放弃特高压交流输电计划,推迟的原因主要是日本经济低迷、电力需求增长迟缓所致;在系统稳定性、输电线路及输变电设备技术等方面,所有技术问题已全部得到解决;1000千伏特高压交流输电不存在技术障碍,具有
12、随时可以升压的技术储备。东京电力公司是日本十家电力公司中最大的一家,其装机容量占日本全国的1/3左右。东京电力的供电面积约39000平方千米,供电区人口约4300万。东京电力公司也是日本唯一具有特高压输电线路及特高压输变电设备实证实验场的电力公司。财满英一博士就东京电力公司何时实现1000千伏特高压交流输电的商业运行问题作了如下说明:这个问题主要取决于三点,一是电力需求的增长,二是新电源点的建设(新建电站因为系统稳定性和短路电流超标等问题,不考虑用500千伏输电电压输送大功率电力),三是即便只考虑潮流问题也需要特高压。最新数据表明:东京电力公司2000年以来年电力需求增长率为1%2%,最高日尖
13、峰负荷出现在2003年,为6400万千瓦。2005年东京电力公司自身的总装机容量为6184万千瓦,不足的电力目前由其他公司供电。以上事实说明,东京电力公司有新增装机的需求。财满英一博士还强调说,由此预计,约2015年前后有可能实现1000千伏特高压交流输电的商业运行,这也是东京电力公司的新榛名特高压设备实证实验场为何至今没有中断设备带电考核的缘故。日本对特高压的研究1973年,日本建成第一回500千伏交流输电线路。同年,正式开始了1000千伏级特高压交流输电技术研究工作。日本特高压输电特别委员会通过对输送1000万千瓦的输电模型系统进行了综合比较研究。经过800千伏/1100千伏/1200千伏
14、/1500千伏等多个交流电压等级及直流500千伏方案的综合技术经济比较,认为:(1)800千伏与1500千伏的缺点:800千伏输电能力低、要求的输电线路回数多、输送电力的成本相对较高、环境及选址不利;1500千伏电压等级难以预测输电线路,变电设备的设计和制造、技术方面不合适。(2)1100千伏与1200千伏的比较:输送能力方面,双回线路正常输送均满足1000万千瓦的输送能力,1200千伏方案稳定极限输送能力可以超过2000万千瓦;绝缘、静电感应和噪声抑制方面,1200千伏比1100千伏的导线数目增加,而且铁塔高度约增加10米,重量增加约30%左右;建设费用方面,1100千伏的建设费用比1200
15、千伏低18%左右;雷击事故率和可靠性基本相同。(3)交流输电与直流输电方式的比较:如果以直流构成外环系统,系统的结构不能满足可靠性要求。虽然有采用多端直流系统的可能性,但进行系统扩充时的灵活性低、多端直流导致经济性下降、有时由于潮流的反转需要改变主电路接线,可能制约外环的运营。直流输电技术主要适合超远距离电源输电系统,而日本输电距离600千米左右不算是超远距离,直流的经济益处不显著。如果在交流事故时(也包括单相对地短路等频度高的事故)换流器会因失去电压支撑而停止,将对系统的稳定带来不利影响。由于上述原因,研究集中在不同等级的交流方案上。综合以上研究,1980年1100千伏(额定电压:1000千
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 世界 高压 交流 输电 技术 工程 一览
限制150内