《七年级数学下学期全册教案.doc》由会员分享,可在线阅读,更多相关《七年级数学下学期全册教案.doc(93页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流七年级数学下学期全册教案.精品文档.人教版七年级下学期全册教案5.1相交线教学目标1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题教学重点与难点重点:邻补角与对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索教学设计一.创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角 在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特
2、征。观察剪刀剪布的过程,引入两条相交直线所成的角。学生观察、思考、回答问题教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,二认识邻补角和对顶角,探索对顶角性质1学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流。当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达;有公共的顶点O,而且的两边分别是两边的反向延长线2学生
3、用量角器分别量一量各角的度数,发现各类角的度数有什么关系?(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)3学生根据观察和度量完成下表:两条直线相交所形成的角分类位置关系数量关系教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?4概括形成邻补角、对顶角概念和对顶角的性质三初步应用练习:下列说法对不对(1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2) 邻补角是互补的两个角,互补的两个角是邻补角(3) 对顶角相等,相等的两个角是对顶角学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象四巩固运用例题:如图,直线a,b相交,求的度数。巩固练习(教科书5页练习
4、)已知,如图,求:的度数 小结邻补角、对顶角. 作业课本P9-1,2P10-7,8 备选题一判断题:如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角( )两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补( )二填空题1如图,直线AB、CD、EF相交于点O,的对顶角是 ,的邻补角是 若:=2:3,则= 2如图,直线AB、CD相交于点O则 5.1.2 垂线教学目标1 理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。2 掌握点到直线的距离的概念,并会度量点到直线的距离。3 掌握垂线的性质,并会利用所学知识进行简单的推理。 教学重点与难点1教学重
5、点:垂线的定义及性质。 2教学难点:垂线的画法。教学过程设计一. 复习提问:1、 叙述邻补角及对顶角的定义。2、 对顶角有怎样的性质。二新课: 引言:前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。(一)垂线的定义 当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 如图,直线AB、CD互相垂直,记作,垂足为O。 请同学举出日常生活中,两条直线互相垂直的实例。注意: 1、 如遇到线段与线段、线段与射线、射线与
6、射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。 2、掌握如下的推理过程:(如上图) 反之,(二)垂线的画法探究:1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?画法:让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。(三)垂线的性质经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画
7、出一条垂线,即:性质1 过一点有且只有一条直线与已知直线垂直。练习:教材第7页探究: 如图,连接直线l外一点P与直线l上各点O,A,B,C,其中(我们称PO为点P到直线l的垂线段)。比较线段PO、PA、PB、PC的长短,这些线段中,哪一条最短? 性质2 连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成: 垂线段最短。(四)点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。如上图,PO的长度叫做点 P到直线l的距离。例1 (1)AB与AC互相垂直;(2)AD与AC互相垂直;(3)点C到AB的垂线段是线段AB;(4)点A到BC的距离是线段AD;(5)线段AB的长度是
8、点B到AC的距离;(6)线段AB是点B到AC的距离。其中正确的有( )A. 1个 B. 2个C. 3个 D. 4个解:A例2 如图,直线AB,CD相交于点O,解:略例3 如图,一辆汽车在直线形公路AB上由A向B行驶,M,N分别是位于公路两侧的村庄,设汽车行驶到点P位置时,距离村庄M最近,行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。练习:1. 2.教材第9页3、4 教材第10页9、10、11、12小结:1. 要掌握好垂线、垂线段、点到直线的距离这几个概念;2. 要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;3. 垂线的性质为今后知识
9、的学习奠定了基础,应该熟练掌握。作业:教材第9页5、6.521 平行线教学目标1理解平行线的意义,了解同一平面内两条直线的位置关系;2理解并掌握平行公理及其推论的内容;3会根据几何语句画图,会用直尺和三角板画平行线;4了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;4了解平行线在实际生活中的应用,能举例加以说明教学重点与难点1教学重点:平行线的概念与平行公理;2教学难点:对平行公理的理解教学过程一、复习提问相交线是如何定义的?二、新课引入平面内两条直线的位置关系除平行外,还有哪些呢?制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念三、同一平面内两条直线的位置关系1平
10、行线概念:在同一平面内,不相交的两条直线叫做平行线直线a与b平行,记作ab(画出图形)2同一平面内两条直线的位置关系有两种:(1)相交;(2)平行3对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”一个前提:对两条直线而言4平行线的画法平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线)四、平行公理1利用前面的教具,说明“过直线外一点有且只有一
11、条直线与已知直线平行”2平行公理:经过直线外一点,有且只有一条直线与这条直线平行提问垂线的性质,并进行比较3平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行即:如果ba,ca,那么bc五、三线八角由前面的教具演示引出如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对六、课堂练习1在同一平面内,两条直线可能的位置关系是 2在同一平面内,三条直线的交点个数可能是 3下列说法正确的是( )A经过一点有且只有一条直线与已知直线平行B经过一点有无数条直线与已知直线平行C经过一点有一条直线与已知直线平行D经过直线外一点有且只有一条直线与已知直
12、线平行4若与是同旁内角,且=50,则的度数是( )A50 B130 C50或130 D不能确定5下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直其中正确的个数是( )A1 B2 C3 D46如图,直线AB,CD被DE所截,则1和 是同位角,1和 是内错角,1和 是同旁内角如果5=1,那么1 3七、小结让学生独立总结本节内容,叙述本节的概念和结论八、课后作业1教材P19第7题;2画图说明在同一平面内三条直线的位置关系及交点情况补充内容1试说明,如果两条直线都和
13、第三条直线平行,那么这两条直线也互相平行2在同一平面内,两条直线的位置关系仅有两种:相交或平行但现实空间是立体的,试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)5.2.2 直线平行的条件 (第2课时)一教学目标(1) 使学生进一步理解并掌握判定两条直线平行的方法;(2) 了解简单的逻辑推理过程.二教学重点与难点重点:判定两条直线平行方法的应用;难点:简单的逻辑推理过程.三教学过程复习提问:1判定两条直线平行的方法有哪些?2.如图(1)(1) 如果1=4,根据_,可得ABCD;(2) 如果1=2,根据_,可得ABCD;(3) 如果1+3=1800,根据_,可得ABCD .ABC
14、DEF12 34 如图(1) A DB C 1 如图(2) 3如图(2)(1) 如果1=D,那么_;(2) 如果1=B,那么_;(3) 如果A+B=1800,那么_;(4) 如果A+D=1800,那么_;新课:例1 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么? 分析:垂直总与直角联系在一起,我们学过哪些判断两条直线平行的方法?ab c1 2答:这两条直线平行. 如图所示理由如下: ba,ca1=2=900(垂直定义)bc(同位角相等,两直线平行)思考: 这是小明同学自己制作的英语抄写纸的一部分,其中的横格线互相平行吗?你有多少种判别方法?例2 如图所示,1=2,
15、BAC=200,ACF=800.(1) 求2的度数;(2) FC与AD平行吗?为什么?AB C DEF12 巩固练习1 教科书19页练习AB CD E122 如图所示,如果1=470,2=1330,D=470,那么BC与DE平行吗?AB与CD平行吗?E DC FA B3 如图所示,已知D=A,B=FCB,试问ED与CF平行吗?4 如图,1=2,2=3,3+4=1800,找出图中互相平行的直线.12345mnlab作业:教科书19页习题5.2第7、8题522直线平行的条件(一)教学目标3. 借助用直尺和三角板画平行线的过程,得出直线平行的条件.4. 会用直线平行的条件来判定直线平行.5. 激发学
16、生学习数学的兴趣.教学重点与难点重点: 理解直线平行的条件.难点: 直线平行的条件的应用教学设计提问复习题:1如图,已知四条直线AB、AC、DE、FG(1)1与2是直线_和直线_被直线_所截而成的_角.(2) 3与2是直线_和直线_被直线_所截而成的_角.(3) 5与6是直线_和直线_被直线_所截而成的_角.(4) 4与7是直线_和直线_被直线_所截而成的_角.(5) 8与2是直线_和直线_被直线_所截而成的_角.2.下面说法中正确的是 ( ).(1) 在同一平面内,两条直线的位置关系有相交、平行、垂直三种 (2) 在同一平面内, 不垂直的两条直线必平行(3) 在同一平面内, 不平行的两条直线
17、必垂直 (4) 在同一平面内,不相交的两条直线一定不垂直3如果 a b ,b c ,那么_,理由是_.导言: 上节课我们学习了平行线的意义, 在同一平面内,两条直线的位置关系,以及平行公理,在此基础上,我们再来研究直线平行的条件.新课:直线平行的条件演示用直尺和三角板画平行线的过程,如果4+2=180, a b吗?三种方法可以简单地说成:例题 已知:如图,直线AB ,CD,EF被MN所截, 1=2, 3+1=180,试说明CD EF.解:因为1=2,所以 AB CD.又因为 3+1=180,所以 AB EF.从而 CD EF (为什么?).课堂练习:1下列判断正确的是 ( ).A. 因为1和2
18、是同旁内角,所以1+2=180B. 因为1和2是内错角,所以1=2 C. 因为1和2是同位角,所以1=2 D. 因为1和2是补角,所以1+2=180 2.如图:(1) 已知1=65, 2=65,那么DE与 BC平行吗?为什么?(2)如果1=65, 3=115,那么AB与DF平行吗?为什么?(3) )如果4=60, 2=65,那么DE与BC平行吗?为什么?3.4如图所示:(1)如果已知1=3,则可判定AB_,其理由是_;(2)如果已知4+5=180,则可判定_,其理由是_;(3)如果已知1+2=180,则可判定_,其理由是_;(4)如果已知5+2=180那么根据对顶角相等有2=_,因此可知4+5
19、= _,所以可确定 _,其理由是_;(5)如果已知1=6,则可判定_,其理由是_. 第4题图 第5题图5.如图,(1)如果1=_,那么DE AC;(2) 如果1=_,那么EF BC;(3)如果FED+ _=180,那么ACED;(4) 如果2+ _=180,那么ABDF.6. 7. 课后作业:习题5.2 第1,2,4题.补充练习: 已知:如图,AB CD,EF分别交 AB、CD于 E、F,EG平分 AEF ,FH平分 EFD EG与 FH平行吗?为什么?5.3平行线的性质(一)教学目标1使学生理解平行线的性质和判定的区别2使学生掌握平行线的三个性质,并能运用它们作简单的推理重点难点重点:平行线
20、的三个性质难点:平行线的三个性质和怎样区分性质和判定关键:能结合图形用符号语言表示平行线的三条性质教学过程一、复习1如何用同位角、内错角、同旁内角来判定两条直线是否平行?2把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?二、新授1实验观察,发现平行线第一个性质请学生画出下图进行实验观察设l1l2,l3与它们相交,请度量1和2的大小,你能发现什么关系?请同学们再作出直线l4,再度量一下3和4的大小,你还能发现它们有什么关系?平行线性质1(公理):两直线平行,同位角相等2演绎推理,发现平行线的其它性质(1)已知:如图,直线AB,CD被直线EF所截,ABCD求证:1= 2(2)已知:如图2-
21、64,直线AB,CD被直线EF所截,ABCD求证:1+2=180在此基础上指出:“平行线的性质2 (定理)”和“平行线的性质3 (定理)”3平行线判定与性质的区别与联系投影:将判定与性质各三条全部打出(1)性质:根据两条直线平行,去证角的相等或互补(2)判定:根据两角相等或互补,去证两条直线平行联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的三、例题AB例2如图所示,ABCD,ACBD找出图中相等的角与互补的角CD此题一定要强调,哪两条直线被哪一条直线所截答:相等的角为:1=2,3=4,5=6,7=8互补的角为:BAC+ACD=180,ABD+CDB=180,CAB+DBA=1
22、80,ACD+BDC=180相等的角还有:ACD=ABD,BAC=BDC(同角的补角相等)例3如图所示已知:ADBC,AEF=B,求证:ADEF分析:(执果索因)从图直观分析,欲证ADEF,只需A+AEF=180,(由因求果)因为ADBC,所以A+B=180,又B=AEF,所以A+AEF=180成立于是得证证明:因为 ADBC,(已知)所以 A+B=180(两直线平行,同旁内角互补)因为 AEF=B,(已知)所以 A+AEF=180,(等量代换)所以 ADEF(同旁内角互补,两条直线平行)四、练习:1如图所示,已知:AE平分BAC,CE平分ACD,且ABCD求证:1+2=90证明:因为 ABC
23、D,所以 BAC+ACD=180,又因为 AE平分BAC,CE平分ACD,所以,故即 1+2=90(理由略)2如图所示,已知:1=2,求证:3+4=180分析:(让学生自己分析)证明:(学生板书)小结我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理从因果关系和所起的作用来看性质定理和判定定理的区别与联系作业:1如图,ABCD,1102,求2、3、4、5的度数,并说明根据?2如图,EF过ABC的一个顶点A,且EFBC,如果B40,275,那么1、3、C、BACBC各是多少度,为什么?3如图,已知ADBC,可以得到哪
24、些角的和为180?已知ABCD,可以得到哪些角相等?并简述理由5.3平行线性质(二)教学目标6. 经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力7. 理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论8. 能够综合运用平行线性质和判定解题教学重点与难点重点:平行线性质和判定综合应用,两条平行线的距离,命题等概念难点:平行线性质和判定灵活运用教学设计一.复习引入 1平行线的判定方法有哪些?2平行线的性质有哪些?3完成下面填空已知:BE是AB的延长线,AD/BC,AB/CD,若 则4那么a,c的位置关系如何?二新课1例1,已知a/c,直线b与c垂直吗
25、?为什么?例2如图是一块梯形铁片的残余部分,量得,梯形另外两个角分别是多少度?2实践 与探究(1)学生操作:用三角尺和直尺画平行线,做成一张个格子的方格纸。观察并思考:做出的方格纸的一部分,线段都与两条平行线垂直吗?它们的长度相等吗?教师给出两条平行线的距离定义:同时垂直于两条平行线,并且夹在这两条平行线间的线段长度叫做两条平行线的距离。问题:AB/CD,在CD上任取一点E,作垂足F,问EF是否垂直DC?垂线段EF是平行线AB、CD的距离吗?结论:两条平行线的距离处处相等,而不随垂线段的位置而改变3命题和它的构成下列语句,分析语句的特点(1)如果两条直线都与第三条直线平行,那么这两条直线也平行
26、。(2)对顶角相等(3)等式两边同加上同一个数,结果仍是等式(4)如果两条直线不平行,那么同位角不相等这些句子都是对某一件事情作出“是”或“不是”的判断命题:判断一件事情的句子,叫做命题(1)命题的组成:命题由题设和结论两部分组成,题设是已知项,结论是由已知项推出的事项 (2)形式:通常写成“如果,那么”的形式,三巩固练习1“等式两边乘以同一个数,结果仍是等式”是命题吗?如果是,它的题设和结论分别是什么?2举出一些命题的例子四作业课本P25 5.4平移教学目标9. 了解平移的概念,会进行点的平移,理解平移的性质,能解决简单的平移问题10. 培养学生的空间观念,学会用运动的观点分析问题.教学重点
27、与难点重点:平移的概念和作图方法.难点:平移的作图.教学设计 一. 观察图形 形成印象 生活中有许多美丽的图案,他们都有着共同的特点,请 同学们欣赏下面图案.观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?学生思考讨论,借助举例说明.二.提出新知 实践探索平移:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点.(3)连接各组对应 的线段平行且相等.图形的这种变换,叫做平移变换,简称平移(translation)探究:设计一个简单的图案
28、,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案三.典例剖析 深化巩固例 如图,(1)平移三角形ABC,使点A运动到A,画出平移后的三角形ABC. 巩固练习教材33页:1,2,4,5,6,7小结1. 在平移过程中,对应点所连的线段也可能在一条直线上,当图形平移的方向是沿着一边所在直线的方向时,那么此边上的对应点必在这条直线上2. 利用平移的特征,作平行线,构造等量关系是接7题常用的方法.作业必做题:教科书33页习题:3题备选题1. 经过平移,三角形ABC的边AB移到了EF,作出平移后的三角形,你能给出几种作法?2. 如图,将半圆图形按箭头所指的方向平移,其中A点到了A点,作出平移
29、后的图形.3. 如图,在四边形ABCD中,AD/BC,AB=CD,ADBC,AEBC垂足为E,画出三角形ABE平移后的三角形,其平移方向为射线AD的方向,平移的距离为AD的长.(1) 平移后的三角形中,与B,E的对应点F,G,还是在BC边上吗?(2) B和C相等吗?说明理由。第六章 实数单元(章)教学计划1、地位与作用:本章是人教版八年级数学上册第三十章内容。学习算术平方根,平方根,立方根之后,为学习实数打下基础;由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展。运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。因此,本章是今后学习根式运算、方程
30、、函数等知识的重要基础。 2、目标与要求:知识与技能通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;会用计算器求算术平方根;使学生理解平方根的概念,了解平方与开平方的关系。学会平方根的表示法和求非负数的平方根;进一步认识实数和数轴上的点一一对应蕴含着数形结合的思想,通过学习不仅是完善了学生的知识结构,而且让学生领会到数形结合的思想,培养了学生的分类意识,使学生养成用多角度思维的思考习惯过程与方法通过了解平方与开平方的关系,培养学生逆向思维能力;能对具体情景中的数学信息作出合理的解释和推断、解决问题,能由实际问题抽象成数学问题,让学生讨论、类比提出自己的见解,并在
31、探索的同时较好的获得新知;经历在具体例子中抽象出概念的过程,培养学习的主动性,提高数学运算能力。 情感态度与价值观通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。3、重点与难点:重点:算术平方根、平方根、立方根的概念和运算;实数的认识。难点:算术平方根与平方根联系与区别;有理数与无理数的区别。4、教法与学法:教师启发引导,学生自主探究,分类比较法,统一归纳法,自学讨论法,小组互动法等教学方法. 5、活动步骤:一、创设导入; 二、探索归纳; 三、应用;四、练习;五、课堂总结;六、布置作业; 6、时
32、间安排:6.1平方根 3课时6.2立方根 1课时6.3实数 2课时复习与小结 2课时6.1.1平方根第一课时【教学目标】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。教学重点:算术平方根的概念和求法。教学难点:算术平方根的求法。教具准备: 三块大小相等的正方形纸片;学生计算器。教学方法: 自主探究、启发引导、小
33、组合作【教学过程】一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为。接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。上面的问题,实际上是已知一个正数的平方,求这个正数的问题。2.归
34、纳:算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a那么这个正数x叫做a的算术平方根。算术平方根的表示方法:a的算术平方根记为,读作“根号a”或“二次很号a”,a叫做被开方数。三、应用:例1、 求下列各数的算术平方根: 解:因为所以的算术平方根是,即;因为,所以的算术平方根是,即;因为,所以的算术平方根是,即;因为,所以的算术平方根是,即;因为,所以的算术平方根是,即。注:根据算术平方根的定义解题,明确平方与开平方互为逆运算;求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解; 0的算术平方根是0。由此例题教师可以引导学生思考如下问题:你能求出1,36,100的
35、算术平方根吗?任意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。即:只有非负数有算术平方根,如果有意义,那么。注:且这一点对于初学者不太容易理解,教师不要强求,可以在以后的教学中慢慢渗透。例2、 求下列各式的值:(1) (2) (3) (4)分析:此题本质还是求几个非负数的算术平方根。解:(1) (2) (3) (4)例3、 求下列各数的算术平方根: 解:(1)因为,所以;因为,所以;因为,所以;因为,所以。根据学生的学习能力和理解能力可进行如下总结:1、由,可得2、由,可得教师需强调时对两种情况都成立。四、随堂练习:1、算术平方根等于本身的
36、数有。2、求下列各式的值:, , , 3、求下列各数的算术平方根:, , , ,4、已知求的值。五、课堂小结1、这节课学习了什么呢? 2、算术平方根的具体意义是怎么样的? 3、怎样求一个正数的算术平方根?六、布置作业 课本第75页习题13.1第1、2题教学反思本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算术平方根的必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略能使学生理解引人算术平方根符号的必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备6.1.2平方根第2课时【教学目标】知识与技
37、能:会用计算器求算术平方根;了解无限不循环小数的特点;会用算术平方根的知识解决实际问题。过程与方法:通过折纸认识第一个无理数,并通过估计它的大小认识无限不循环小数的特点。用计算器计算算术平方根,使学生了解利用计算器可以求出任意一个正数的算术平方根,再通过一些特殊的例子找出一些数的算术平方根的规律,最后让学生感受算术平方根在实际生活中的应用。情感态度与价值观:通过探究的大小,培养学生的估算意识,了解两个方向无限逼近的数学思想,并且锻炼学生克服困难的意志,建立自信心,提高学习热情。教学重点:认识无限不循环小数的特点,会估算一些数的算术平方根。会用算术平方根的知识解决实际问题。教学难点:认识无限不循
38、环小数的特点,会估算一些数的算术平方根。教学方法: 自主探究、启发引导、小组合作教学过程: 一、通过实验引入:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?如图,把两个小正方形沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2的大正方形。你知道这个大正方形的边长是多少吗?设大正方形的边长为,则,由算术平方根的意义可知,所以大正方形的边长为。二、讨论的大小:由上面的实验我们认识了,它的大小是多少呢?它所表示的数有什么特征呢?下面我们讨论的大小。因为,所以.因为,所以。因为,所以因为,所以如此进行下去,我们发现它的小数位数无限,且小数部分不循环,像这样的数我们成为无限不循环
39、小数。=注:这种估算体现了两个方向向中间无限逼近的数学思想,学生第一次接触,不好理解,教师在讲解时速度要放慢,可能需要讲两遍。=,是个无限不循环小数,但是很抽象,没有办法全部表示出来它的大小,类似这样的数还有很多,比如等,圆周率也是一个无限不循环小数。三、用计算器求算术平方根:大多数计算器都有“”键,用它可以求出一个有理数的算术平方根或近似值。例1、 用计算器求下列各式的值:; (精确到解:(1)依次按键,显示:56.所以(2)依次按键2=,显示:,这是一个近似值。所以注:不同品牌的计算器,按键的顺序可能有所不同。四、探索规律:(1)利用计算器计算,并将计算结果填在表中,你发现了什么规律?(2)用计算器计算(结果保留4个有效数字),并利用你发现的规律写出, ,的近似值。你能根据的值求出的值吗?学生通过计算器可求出(1)的答案,依次是:。从运算结果可以发现,被开方数扩大或缩小100倍时,它的算术平方根就扩大或缩小10倍。由可得,由的值不能求出的值,因为规律是被开方数扩大或缩小100倍时,它的算术平方根才扩大或缩小10倍,而3到30扩大的是10倍,所以不能由此规律求出。此题学生可独立完成。五、实际应用:例1、小丽想用一块面积为的正方形纸片,沿着边的
限制150内