世界科技全景百卷书-海洋工程.doc
《世界科技全景百卷书-海洋工程.doc》由会员分享,可在线阅读,更多相关《世界科技全景百卷书-海洋工程.doc(46页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流世界科技全景百卷书-海洋工程.精品文档.海洋工程蓝色的星球 海水来自何方当我们打开世界地图,或站在地球仪的旁边,把地球仪转动一下,我们 会惊奇地发现,海洋的面积要比陆地的面积大得多,那一片片蔚蓝色就显示 出地球上的海洋之大。人类的第一次宇宙航行更加清楚地看见了地球在宇宙中的模样。宇航员 清晰地发现地球四周围绕着一层淡蓝色的光,就像镀着蓝色的金属茶盘挂在 空中。在地球 51,100 万平方公里的总面积里,海洋面积有 36,200 万平方 公里,占地球表面总面积的 71,而陆地的面积只有 14,900 万平方公里, 占地球总面积的 29。这就是为
2、什么宇航员在太空中见到的地球是蓝色的缘 故。我们也不难理解我们身边的海洋是多么巨大,无怪乎人们要用“无边无 际”、“浩翰无垠”等词句去形容它了。面对着广阔的海洋,人们又会问:地球上的水究竟从哪里来? 对于这个问题也有许多神奇的说法,我们大家都知道“盘古开天辟地”的神话。说的是很古很古的时候,我们生活的地球并没有个形状,原本只是 一片混沌的状态,天和地混在一起雾气腾腾,不分光明和黑暗,也没有上下 和四方,就像一个大大的看不见光亮的鸡蛋,里面没有光没有色彩,到处都 是昏暗和死寂。可是鸡蛋里却孕育着一条生命。他利用宇宙的精华作为养料,终于诞生 了世界上第一个人,他的名字叫盘古。浓雾包围着盘古,使他睁
3、不开眼,无论向哪一方也都走不出去,仿佛关 在了满是雾气的黑房子里,气闷得令人窒息。有一次,他把双手往腰间一叉,忽然觉得腰上多了一个冰冷坚硬的东西, 拿起一看,竟然是一把锋利的板斧。有了武器,盘古非常高兴,就抡起板斧, 用尽全身气力朝那一片迷雾劈去。说也真怪,只听得轰隆一声巨响,无数尘 埃乱碰乱撞,仿佛打碎的蛋黄变成了无数星星在空中扩散开来。平静以后,盘古也觉得奇怪,原来,大鸡蛋竟然被板斧劈开了。轻清的 东西不断上升着,渐渐变成了瓦蓝瓦蓝的天空;重浊的东西则不断下沉着, 渐渐变成了灰黑的大地。盘古呢,为了不让天和地再混在一起,就站立在天地之间,头顶着天, 脚踩着地,巍然屹立。天,每日要升高一丈;
4、地,每日要加厚一丈,天地稳 固了,盘古每天长高一丈,仍然头顶着天,脚立着地。就这样,过了 18,000 年,盘古活了 18,000 岁才死,天地也就形成了。 盘古终于倒下了,盘古死后,他的身体各部分变成了日月星辰、风、云、山川、田地、草木和金石,于是也就有了人间的万物。 其实,“盘古开天辟地”只是在人类处于蒙昧时代的时候,由于对自然现象不能正确地认识,总是把自然界万物的产生、变化、发展等等,归之于“神”,归之于一种超自然的力量,而这种超自然的“神”,又是人们按照 自己的形象“创造”出来的。在科学发达的今天,科学家对地球的起源和生命的起源不断地探索着。 据科学家们研究,宇宙中有着许多大大小小的由
5、氢氦等气体以及一些来 自衰老了的星球爆炸以后而形成的固体尘埃气团,像巨大的云一样,飘在宇 宙之中。然后这些云再缓慢地收缩、集合产生旋转运动,最后诞生新的星球。地球就是这样形成的。在地球诞生的初期,地面上温度逐渐降低,包围 着地球的水汽,也冷凝成水滴,小水滴飘浮在天空,集结成云雾,落下来, 便是雨水。据说,大约在 1 亿10 亿年以前,在几千年,几万年里,地球上 不停地下着倾盆大雨,雨水冲刷着山岭,带走了泥沙和溶解的物质。于是地球上有了高山,有了凹地;在原始的江河里,浊流滚滚,奔向凹 地,形成了原始的海洋。这样我们该清楚了:地球上的水来自地球本身。海洋的温度海洋,以它千变万化,瑰丽壮美的姿态展现
6、在我们面前。面对着神奇的 大海,我们不禁会想去探索那海洋深处的奥妙。在炎热的夏季,当我们来到碧蓝碧蓝的大海边,我们会身不由己地投入 到她的怀抱。当你在海里泡得浑身发抖,不得不上岸趴在烫人的沙滩上,让 火热的太阳再给你一些温暖时,你有没有想过,同样处在烈日炎炎之下,为 什么沙滩就灸热烫人,而大海却令人打颤。若在寒冷的冬季,泡在海水里却 又觉得似乎比岸上还暖和,如果你向下潜泳,就会觉得海越来越冷,这又是 为什么呢?人们经过研究发现,到达地球表面的太阳辐射能,大部分被地球吸收了, 只有一小部分反射回空中,而陆地和海洋表面吸热情况又不一样,陆地只吸 收太阳辐射能的一部分,剩下的就被反射回空中了,但是陆
7、地是一种不能很 好传热的固体,既不透明又不流动。太阳即使再厉害些,也晒不透它,因为 不能很好地传热,它所吸收的热量只是集中在不到一毫米厚的表层内。而海洋上的情况就不同了,阳光投射在海面上,绝大部分被水分子吸收。 水分子吸收热量以后,又把自己“剩下”的一部分向更下边传递。愈往下传 递,热量也就愈少。海水除了吸收太阳热量向下垂直传递外,还依靠海水的 流动来输送热量。由于受地球自转偏向力的影响,形成海流。海流就可以把 赤道附近的热海水即暖流送到两极;而两极方向的冷海水也即寒流流向温暖 的地方,这样也可以进行海水的冷热交换。暖寒流对它们所经过地区的气候 都有很大的影响。当暖流到达时,当地的天气就会变得
8、温暖潮湿;而寒流则 相反,天气会变得寒冷干燥。海水吸收热量因时间和地区的不同也不相同。 在夏季和白天,海水就接受比较多的热量,它可以把热量送到深层贮存起来,水温升高;冬天和夜间情况就不同了,海水接受的热量少,他又会把 贮存在深层的热量输送到表层。从地理纬度上看,赤道地区,阳光直射,海面温度较高;中纬度区域, 日射偏斜,温度较低。纬度越高,温度越低。因此太平洋的海面温度较高, 而北冰洋的海面温度比较低。还应该注意,海水在吸收热量的同时,也反射一部分到大气中。进入海 洋中的热量,把本来就处在永恒运动中的水分子加热了,使他们的活动能力 加强,于是有些水分子就能够脱离水面进入空中。大量的水分子脱离水面
9、就 是蒸发,即把热量向外传送,海洋的热量收入和支出总是处于动态平衡中。 随着时间、季节、纬度的不同,海水的温度会有变化,但其平均温度却几乎 是相等的。我们不必担心海水的体温会变得越来越高。我们说了海洋有一定的温度,现在让我们看看海洋对天气是怎样产生影 响的。世界上许许多多的地区得到了海洋的照顾,海洋赋予它们适宜的温度和 充沛的水分。大陆在海洋的怀抱里,海洋把它温暖滋润。也许大多数人还不知道当阳光照射到地面上,给大气加了温,温度高些 的大气开始膨胀,上升变得稀薄一些,压力就减少一些;相反,阴天时,气 温低,空气密度大,就会下沉,压力就大一些。这样就产生了气压高低的变 化。太阳照射着地球,无私地把
10、它的热量奉献给地球。海洋也不断地吸收热 量。被加热了的海水,又把它的热量还送给大气,也影响着大气的压力。我们知道温度高的物质总是向它邻近的温度低的物质传递自己的热量, 一直到双方温度相同。空气受热膨胀上升,遇冷收缩下降。热空气跑掉时, 海洋上的冷空气便会来填补它的位置。相反,当海洋上的空气受热上升时, 陆地上比较冷的空气又会跑到海洋上来,这样跑来跑去的空气就是风。跑得 快,风大;跑得慢,风小。夏天海洋吹来凉爽的风;冬天又送来温暖湿润的 风。因此海滨成为人们向往的好去处。海洋上温暖的风携带着潮湿的空气,碰到冷空气便凝结成水滴,变成雨 水纷纷落下来,有时则会变成冰雹或雪花降落下来。海洋对气候的影响
11、,还 要根据当时当地的具体气象条件如温度、湿度、风向、风速、气压等等而定, 还要取决于当地的地理条件。沿海的大陆受海洋的影响比较大。例如英国终年温暖,雨量丰沛,气候 湿润。我国东南沿海由于受太平洋暖湿气流的影响,较内陆地区雨水丰富, 气候宜人。而远离海洋的内陆由于受高山的阻隔,湿润空气不易到达那里, 受海洋的影响会相当少。海洋,它调节着空气的温度、湿度,送来动植物赖以生存的水,哺育了 万物。生命的摇篮生命究竟是上帝创造的还是地球发展的产物,对于这个问题经历了一个 多世纪的争论,科学终于证明了生命是地球的产物。生命从单细胞的形成开始,它们在水中生活,自由自在地嬉戏、游弋、 繁衍和增殖。经过几亿年
12、的演变,生命由低级向高级进化,不少生物的活动 舞台由大海移向陆地,人类也是这样,是在生物的发展演变中产生的。科学家通过对海底“化石”的研究发现,这些“化石”是古海底的一些 生物遗体。古老的海底在地壳的运动中有的上升成陆地、高山;有的继续下 沉形成海沟,经过亿万年的时间,海底动植物的遗体成了化石。人们从这些 化石所出土的地层,便可推知亿万年前的海洋里生命的活动情况。在距今五亿多年前的早古代寒武纪,单细胞原生动物已经是海洋里十分 活跃的居民了,这些原生动物有独立活动的本领,有刺激感应,它们能伸出 一些树枝状的“小脚”捕捉食物或改变自己的“行走”路线,趋向阳光或者 走向阴凉的地方。古海绵利用它周身的
13、水管吸取着海水的养料;三叶虫吞食 着藻类。从浅海到几千米深的大洋里到处可见三叶虫活动的踪迹。在整个古 生代四亿多年里,三叶虫都在繁殖着子孙。在清澈的浅海里,像杯子一样的古杯动物拥挤地站立在岩礁上。蛹虫、古棘皮动物、甲壳动物、软体动物、 腔肠动物等等都是这时期的主要角色。从六亿年前的寒武纪到两亿年前的二 迭纪,海洋是一个繁荣的世界。生命在不断地进化。人出现在四亿年前的奥陶纪,经过志留纪和泥盆纪一代代繁殖着自己的 后代,成为海洋的主人,并逐渐走上陆地。以后不管地球上发生什么样的剧 烈变化,总有一些无颚鱼的后代能适应改变了的生活环境,变换着自己的身 体结构。到距今三亿年左右,它们越过了潮间带,爬上陆
14、地,成为既可以生 活在陆地上,又可以回到水里的居民两栖动物。那时的陆地上,气候温暖而湿润,长满了高大的鳞木、封印木、沟鳞木 和各种羊齿植物,阳光在这里比海洋里要充足得多,生命赖以生存的氧气, 也更加丰富。慢慢地生物用来呼吸的肺变得越来越完善了。生命度过了两栖 阶段,脱离了海洋。到了二亿三千多万年前的中生代,爬行动物异常繁盛,以致于我们把一 亿八千万年前的一段时间称为爬行动物的时代。哺乳动物出现在距今一亿八 千万年前的中生代侏罗纪。又过了一亿一千万年进入新生代时,哺乳动物才成为陆地上的统治者。 和我们人类有直接关系的灵长类就是哺乳动物的一个分枝,它们的出现却要 晚得多,只有二千五百多万年的历史。
15、而我们人类的祖先诞生在 300 万年前 的新生代第三纪,这是整个生命发展史上的一个重大事件,而 300 万年只占 了它的二百分之一。为什么海洋能在生命发展史上发挥这么重要的作用呢?这是因为海洋具 备了生命生存和发展的必要条件。海水里溶解着各种各样的营养物质,如碳 酸盐、硝酸盐、磷酸盐、氧这都是生命所不可缺少的。海洋拥抱了那些 原始的生命,充足的海水使得这些生命可以进行新陈代谢。至今,水一直是 生命的“命根子”。海洋把阳光挡住,使得生活在它怀抱里的生命免受阳光的杀伤,特别是 免受紫外线的伤害。海水吸收了阳光,表层变得温暖起来,这层温暖的海水 就是生命的襁褓。它覆盖着怀里的“婴儿”,使得它们不会被
16、冻死。这些原 始的生命,生活在海洋里,它们吸收营养和排泄废物的那一部分器官进化成 了消化和排泄器官;它们经常用来感觉光线的那一部分进化成了眼睛;它们 用来活动的那些枝桠进化成了鱼鳍;那些支配和协调动作的一部分进化成为 神经和脑。生命就这样成长、进化,后来有一些离开自己的故乡,来到陆地; 有一些则被留在海洋里。现在的鱼、虾、贝、藻还可以算作人类的远房表亲 呢!那么,是不是海洋一直那么细心温柔地照料自己“创造”的生命呢?说 实在的,地球根本不把海洋放在眼里,海洋也没有心思去关心怀抱里的生命。 地壳运动使岩层断裂,海底火山爆发,炽热的岩浆把海水变成腾空的蒸汽, 亿万生命一刹那间化成云烟,飘散到空中;
17、寒风带着一股冰冷的海水冲了过 来,把一群鲜活的生物变成埋藏在海底的尸体;地壳升高,大片的海水被分 隔开来,阳光肆意施展威力,把水晒热、烤干,迫使泥水里的生物张开嘴呼 吸在大自然面前,能存活的生物就传宗接代,繁衍下来;不适应新环境 的生物则被淘汰,在地球上消失了踪迹。也有不少侥幸从自然选择的网眼里 逃脱了出来的,成为今天的活标本。1952 年在印度洋捕到的一条马氏矛尾 鱼,就是一例。这条马氏矛尾鱼是两亿年前海洋里总鳍鱼的近亲,它们侥幸躲过了大自然的选择,一直把祖先遗传的体形保存到现在。 海洋中的生物死亡后,它们的钙质骨骼沉降在海底,逐渐被挤压成数百米厚的岩石,它们的肉体被封闭在岩石缝隙里,在一定
18、的温度和压力下变成 黑乎乎的粘稠的液体,也就是海底石油,它是人类生活所不可缺少的能源。 海洋孕育了生命,又是生命幼稚时期的摇篮。现代的海洋更呈现出一派 生机勃勃的繁荣景象。成千上万种生物被拥抱在它蔚蓝色的怀抱里,从海洋 那儿获得营养,繁殖着后代。那些小型生物,如硅藻、海球藻和小型水母、 箭虫、小甲壳动物等等,随波逐流,称为浮游生物,它们是海洋里那些小居 民们的粮食;而那些人们熟悉的鱼虾、海兽、海龟等,它们的游泳能力较强, 称为自游动物;那些生活在海底的生物,有的固着在岩石上,有的躲藏在泥 沙里,有的附着在其他生物身上,有的缓慢地移动着笨重的身体人们称 它们为底栖生物。海洋无私地哺育着这些生物,
19、经过亿万年的演化,终于发展成现今我们所见到的海洋生物界。永不疲劳的海洋翻滚的海浪每个人大概都见过这样种现象:一张纸或船在水中漂浮时,它们是随着 波浪上下起伏的,波形在水表面水平运动,而纸张或船虽仍然上下起伏并没 有作水平方向的运动。它一会儿被举到波浪尖上,一会儿又落入两个波浪的 凹处。海浪的形状几乎是差不多的,一凹一凸起伏不断,凹下的低处就是波 谷,那凸起的波浪尖称为波峰,波峰和其相邻波谷之间的距离即波浪的高度 称波高。两个波峰间的距离就是波浪的长度波长,波形的传播速度叫波 速,即波速波长周期。两个相邻的波峰先后出现的时间间隔就是波浪的 周期。那么,波浪是如何形成的呢? 民间流传着“无风不起浪
20、,有风高三丈”的俗话,道出了风浪产生的条件和原因。 风吹在海面上,风借助与海面的摩擦作用,把能量传递给海水,从而形成层层波浪。风力越强,风吹的时间越久,波浪获取的能量就越多,浪越大; 风吹的范围越大,水面上的浪区越大。海水是由无数的水质点集合起来的。 在静止状态时,每个水质点都在自己的平衡位置上,而在风的作用下,水质 点不断获得能量,使得波高、波长增长,使水质点失去平衡。而它们又迫不 急待地要回到原来的位置上,但不可能立即回去,这样就造成它们各自绕着 自己的平衡位置打转。当波浪不再接受风的能量,外力消失,那么水质点就 会回到平衡位置,静止下来。在海洋里,水面船只往往颠簸动荡,而在海洋深处的潜水
21、艇却平安无事, 这是怎么回事呢?原来,越向深处水质点受到风的影响越小。波浪随着深度 的增加越来越小,直到停止为止。一个波高为 10 米,波长为 200 米的波浪, 在 200 米的深处,它的振幅减小到 10 毫米,也就是说海面上的这样大的巨浪, 到 200 米的深处只不过引起两厘米的波动而已。不仅水质点的振幅变小,它 们的速度也减慢了。所以尽管海面上巨浪滔天,在不太深的海里却胜似闲庭, 风平浪静,潜水艇稳如泰山。我们讲到的海浪包括风浪、涌浪及近岸波。上面我们介绍的就是风浪, 那么当风浪离开风区时是不是就静止下来呢?航海家在海上常会遇到这样的 情况:明明是风和日丽,海面上却巨浪如山。原来海面并不
22、随着风的转向(或 停止)而立即安静下来,却持续波动一个相应长的时期,它们向邻近的海域 传播出去。但是这时的波动和在风咆哮时却大不相同,波面上比较平缓,波 峰要圆滑得多,波长也显然长得多,以周期和波高都相同的列波开始运动, 特别是当它们向邻近的海域传播出去的时候,波长变得越来越长,传播速度 越来越快,波高也越来越低矮了,这种由风区传入无风区的海浪,以及风停 止或转向之后,脱离风的作用而继续朝着原有的方向传播的波浪就是涌浪。 当风浪或涌浪从大洋传到近岸浅海地区时,受到海岸地形的约束,只好 改变自己的方向。当我们站在海边眺望层层波浪时,总看到他们排着几乎和 海岸平行的长队向岸边涌来。这是因为波浪在深
23、水处传播的速度比在浅水里 快,水越浅,它们的下部受到海底的摩擦力越大,行动就慢了。当波峰线的 一端先进入较浅的地方时,行动就迟缓了些,同时,在较深的那一端行动仍 较快,一快一慢,两者在等深线附近速度趋于相近,而近岸的等深线又大都 和海岸平行,所以人们就会看到一排排大致与海岸平行的波浪滚向岸边,退潮时也会在海滩上留下和海岸平行的沙纹。 波浪来到岸边会发生各种不同的情况。如果是陡峭的岩岸,它们就扑上去冲击;如果是斜斜的砂砾或泥质的海岸,它们在坡度较大时形成卷波,坡 度小时就形成崩波。不管是什么波,由于长年累月地冲上来,滚下去,都会 使海岸或被冲击、侵蚀,或被堆积。你看那些七零八落的巨大的石块就是岸
24、 边的花岗石长期被波浪冲击的结果;那海边光滑的砾石,又是岩山的化身; 粉状的砂子,又是砾石的未来呢!海岸在波浪的作用下昼夜不停地被破坏着, 又被塑造着。当前进的波浪碰到陡峭的岩岸或长长的海堤或其他建筑时,除了向前冲 击外,还被反射回来。反射回来的波就重叠在前进的波浪上,使波形只在原 地上下波动,既不前进也不后退。人们为了把它与前进波区别开,称它为“驻 波”。驻波振动最大的地方叫“波腹”,不振动的地方叫“波节。”波腹处 垂直流速最大,波节处水平流速最大。发生驻波的地方海面会升高,更由于 波节处的水平流速大,所以冲刷力量强,因此在海港建筑施工设计中就要特 别考虑驻波的影响,采取加强基础等措施。波浪
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 世界 科技 全景 百卷书 海洋工程
限制150内