关联规则挖掘技术在零售业中的应用.doc
《关联规则挖掘技术在零售业中的应用.doc》由会员分享,可在线阅读,更多相关《关联规则挖掘技术在零售业中的应用.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流关联规则挖掘技术在零售业中的应用.精品文档.关联规则挖掘技术在零售业中的应用【摘要】数据挖掘技术是近年来数据库和人工智能领域研究的热点课题,它引起了科学界和产业界的广泛关注。作为一门交叉性学科,它涉及到机器学习、模式识别、归纳推理、统计学、数据库、数据可视化、高性能计算等多个领域。关联规则是数据挖掘研究中的一个重要的研究内容,它是完成数据挖掘任务的一个重要手段。在零售业,数据挖掘可有助于识别顾客购买行为,发现顾客购买模式和趋势,改进服务质量,取得更好的顾客保持力和满意程度,提高货品销量比率,设计更好的货品运输与分销策略,减少商业成本。【关键词
2、】 关联规则 数据挖掘 Apriori 算法一:关联规则的含义: 设I=i1, i2, im是项的集合,其中的元素称为项(item)。记D为事务(transaction)T的集合,这里事务T是项的集合,并且TI 。对应每一个事务有唯一的标识,如事务号,记作TID。设X是一个I中项的集合,如果XT,那么称事务T包含X。一个关联规则是形如XY的蕴涵式,这里XI, YI,并且XY=F。规则XY在事务数据库D中的支持度(support)是事务集中包含X和Y的事务数与所有事务数之比,记为support(XY),即support(XY)= P(X Y)规则XY在事务集中的可信度(confidence)是指
3、包含X和Y的事务数与包含X的交易数之比,记为confidence(XY),即confidence(XY)= P(X|Y)给定一个事务集D,挖掘关联规则问题就是寻找支持度和可信度分别大于用户给定的最小支持度(minsupp)和最小可信度(minconf)的关联规则。二:关联规则的分类: 按照不同情况,关联规则可以进行分类如下:1.基于规则中处理的变量的类别,关联规则可以分为布尔型和数值型。 布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动态的分割,或者直接对原始的数据进行处理,当然数值型
4、关联规则中也可以包含种类变量。例如:性别=“女”=职业=“秘书” ,是布尔型关联规则;性别=“女”=avg(收入)=2300,涉及的收入是数值类型,所以是一个数值型关联规则。2.基于规则中数据的抽象层次,可以分为单层关联规则和多层关联规则。 在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而在多层的关联规则中,对数据的多层性已经进行了充分的考虑。例如:IBM台式机=Sony打印机,是一个细节数据上的单层关联规则;台式机=Sony打印机,是一个较高层次和细节层次之间的多层关联规则。3.基于规则中涉及到的数据的维数,关联规则可以分为单维关联规则和多维关联规则。 在单维的
5、关联规则中,我们只涉及到数据的一个维,如用户购买的物品;而在多维的关联规则中,要处理的数据将会涉及多个维。换成另一句话,单维关联规则是处理单个属性中的一些关系;多维关联规则是处理各个属性之间的某些关系。例如:啤酒=尿布,这条规则只涉及到用户的购买的物品;性别=“女”=职业=“秘书”,这条规则就涉及到两个字段的信息,是两个维上的一条关联规则。三:关联规则的相关算法: 1.Apriori算法:使用候选项集找频繁项集 Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度
6、的项集称为频繁项集,简称频集。 该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法。 Apriori算法可以产生相对较小的候选项目集,扫描数据库的次数由最大频繁项目集的项目数决定。因此,该算法适合于最大频繁项目集相对较小的数据集中的关联规则挖掘问题。 Apri
7、ori算法的两大缺点:1.可能产生大量的候选集;2.可能需要重复扫描数据库。 2.FP-growth算法 针对Apriori算法的固有缺陷, FP-growth算法是一种不产生候选挖掘频繁项集的方法,弥补了Apriori算法中的固有缺陷,是大型数据库挖掘频繁项集的一个有效的算法。FP-growth算法采用分而治之的策略,在经过第一遍扫描之后,把数据库中的频集压缩进一棵频繁模式树(FP-tree),同时依然保留其中的关联信息,随后再将FP-tree分化成一些条件库,每个库和一个长度为1的频集相关,然后再对这些条件库分别进行挖掘。当原始数据量很大的时候,也可以结合划分的方法,使得一个FP-tree
8、可以放入主存中。实验表明,FP-growth对不同长度的规则都有很好的适应性,同时在效率上较之Apriori算法有巨大的提高。3.多层关联规则挖掘算法 对于很多的应用来说,由于数据分布的分散性,所以很难在数据最细节的层次上发现一些强关联规则。当我们引入概念层次后,就可以在较高的层次上进行挖掘。虽然较高层次上得出的规则可能是更普通的信息,但是对于一个用户来说是普通的信息,对于另一个用户却未必如此。所以数据挖掘应该提供这样一种在多个层次上进行挖掘的功能。 多层关联规则的分类:根据规则中涉及到的层次,多层关联规则可以分为同层关联规则和层间关联规则。 多层关联规则的挖掘基本上可以沿用“支持度-可信度”
9、的框架。不过,在支持度设置的问题上有一些要考虑的东西。 4.多维关联规则挖掘算法 对于多维数据库而言,除维内的关联规则外,还有一类多维的关联规则。例如:年龄(X,“2030”) 职业(X,“学生”)= 购买(X,“笔记本电脑”)在这里我们就涉及到三个维上的数据:年龄、职业、购买。 根据是否允许同一个维重复出现,可以又细分为维间的关联规则(不允许维重复出现)和混合维关联规则(允许维在规则的左右同时出现)。如:年龄(X,“2030”) 购买(X,“笔记本电脑”) = 购买(X,“打印机”) 这个规则就是混合维关联规则。 在挖掘维间关联规则和混合维关联规则的时候,还要考虑不同的字段种类:种类型和数值
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 关联 规则 挖掘 技术 零售业 中的 应用
限制150内