《几何光学讲稿.doc》由会员分享,可在线阅读,更多相关《几何光学讲稿.doc(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流几何光学讲稿.精品文档.工程光学讲义主讲:刘文超湖北工业大学机械工程学院第一章 几何光学基本定律与成像概念本章重点: 几何光学的基本术语及基本定律、光路计算及完善成像的条件。第一节 几何光学基本定律一、光波与光线1、光波性质性质:光是一种电磁波,是横波。我们平常看到的光波属于可见光波,波长范围390nm780nm光波分为两种:单色光波及复色光波2、光波的传播速度光波的传播速度不是一个常数,而是一个变量,它主要与以下二因素: 与介质折射率n有关; 与波长有关系。 c/n 式中,c为光在真空中的传播速度;n为介质折射率。、光线:是没有直径、没有体
2、积却携有能量并具有方向性的几何线。、光束:同一光源发出的光线的集合。、波面(等位相面) 常见波面有:平面波、球面波、柱面波。二、几何光学的四大基本定律1、直线传播定律:在各向同性的均匀介质中,光沿直线传播(光线是直线)。2、独立传播定律:从不同光源发出的光束,以不同的方向通过空间某点时,彼此互不影响,各光束独立传播。3、折射定律:入射光线、反射光线、通过投射点的法线三者位于同一平面,入射角等于反射角且大小相等符号相反。(分居法线两侧) 4、折射定律:入射光线、折射光线、通过投射点的法线三者位于同一平面,并且有:式中,为入射角;为折射角;n为第一种介质折射率;n为第二种介质折射率。以上我们分析了
3、四大定律,下面我们讲一下光学中一个非常重要的现象全反射现象。三、全反射现象(又称完全内反射)1、定义:从光密介质射入到光疏介质,并且当入射角大于临界角时,在二种介质的分界面上光全部返回到原介质中的现象。2、临界角是:折射角刚好为900的入射角。其数学表示形式如下: 根据折射定律3、全反射发生的条件要想发生全反射,必须满足以下二个条件:入射光必须从光密介质射入到光疏介质;入射角必须大于临界角。4、全反射的应用。反射棱镜:棱镜是光学设计时使用的比较多的一类光学元件,而其中的部分棱镜就利用了全反射的特点。如:一次反射式的等腰直角棱镜。光纤(是光学纤维的简称)它也是基于全反射的道理,主要用于光学通讯当
4、中。光纤的功能:具有传光、传象及传输其它信号的功能,在医学、工业、国防得到广泛的应用。光纤保证发生全反射的条件:n0sinI1称为光纤的数值孔径,式中,I1为设射入光纤端面的入射角。四、费马原理(又称为极值光程定律) 费马原理首次提出了光程的概念,并从光程角度出发,对光的传播定律进行了高度概括。1、光程(S):指光在介质中传播的几何路程(S)与该介质折射率n的乘积。其数学表示形式为: S=nl 若光经过m层均匀介质,则总的光程可写为: 若光经过的是非均匀介质,即n是一个变量,这时光程可表示为:2、费马原理:光从一点传播到另一点,经过任意多次反射和折射光程为极值。其数学表示如下: 五、马吕斯定律
5、:光束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,且入射波面与出射波面各对应点之间的光程为定值。12 成象的基本概念与完善成像条件一、 光学系统与完善成象的概念1、光学系统:由一系列的光学元件所构成的系统。这里所说的光学元件可以是透镜、反射镜、棱镜等。光学系统又分为:共轴光学系统及非共轴光学系统2、完善成象:象与物体只有大小的变化没有形状的改变(物与象是完全相似的)。二、 完善成像的条件入射为球面波,出射也为球面波(入射为同心光束,出射也为同心光束)。三、 物、象的虚实物有虚实之分,象也有虚实之分。物:发出入射光波的。象:由出射光波形成的。1、实物、实象:由实际光线相交而成的就称为
6、实;2、虚物、虚像:由实际光线的延长线相交而成的。实象可由人眼或接收器(屏幕、CCD、底片、光电倍增管等)所接收;虚象不可以被接收器所接收,但是却可以被人眼所观察。3、物空间、象空间物所在的空间称为物空间;象所在的空间叫象空间。无论是物空间还是象空间都是无限延伸的,不能机械的以左右划分。13 光路计算与近轴光学系统一、符号规则(新笛卡尔符号规则)新笛卡尔符号规则对所涉及的线段及角度都作了相应的规定:假设光是自左向右传播则有:对垂轴线段:以光轴为准,在光轴之上为“”,光轴之下为“”;对沿轴线段:以顶点O为原点,顶点到光线与光轴交点的方向与光的传播方向相同则为“”,反之则为“”;光线与光轴夹角(称
7、为孔径角):由光轴转向光线,以锐角方向进行度量,顺时针为“”,逆时针为“”;法线与光轴的夹角():由光轴以锐角转向法线,顺时针为“”,逆时针为“”;光线与法线的夹角:由光线以锐角转向法线,顺时针为“”,逆时针为“”;折射面之间的间隔(d):由前一折射面的顶点到后一折射面的顶点方向与光线的传播方向一致为“”,反之为“”;如图1-1所示:二、单个折射面的实际光线的光路计算在这里分二种情况分别考虑:物在无限远及物在有限远。以下的公式是根据简单的几何三角关系得到的:1、物在有限远:2、物在无限远: 现设一条光线平行于光轴入射,入射高度为h,则有:三、近轴光的光路计算公式1、近轴光:指在光轴附近区域内的
8、光线。2、近轴光的光路计算公式 当l,r为确定值时,在近轴区,无论u为何值,l均为定值。即不同孔径角发出的光交于一点,出射为同心光束。这就意味着当采光近轴光成像时,是完善的。3、阿贝不变量及高斯公式1)阿贝不变量Q: 2)高斯公式(物象位置关系公式):14 球面光学成象系统一、单个折射面成像的放大倍率介绍三种放大倍率,分别为:垂轴放大率、角放大率、沿轴放大率1、垂轴放大率(横向放大倍率):象的大小与物的大小比值。其数学表示形式为:说明:是有符号数 0成正象,象的虚实与物相反。 0表示光束本身是会聚的;会聚度0表示光学系统对光束起到会聚作用; 0透镜,常见的有:双凸透镜,平凸,正弯月型等 负透镜
9、0透镜,常见的有:双凹透镜,平凹,负弯月型等二、透镜焦距公式三、薄透镜 若透镜厚度d与焦距 或曲率半径相比是很小的数,此时 ,即透镜厚度可忽略不计,这样的透镜就可称为薄透镜。此外,对于薄透镜而言,其象方主面与物方主面相重合于透镜顶点处。第三章 平面与平面系统本章重点: 掌握平面镜、平行平板及棱镜的成像特性。常见的平面系统包括:平面镜、棱镜、光楔、平行平板。31 平面镜成像一、 平面镜成像1、平面镜的成像特性 平面镜是最常用的光学元件之一,也是最简单并能成完善像的唯一一个光学元件。2、物像位置关系及放大率公式 物像位置关系式: 即像与物相对于平面镜来讲是对称的。 放大率公式: 即物像大小一致,且
10、成正象。3、镜像与一致像1)所谓镜像是指若物为右手坐标,像为左手坐标,这种像叫为镜像。见图3-1图3-1 特点:像与物上、下同向,但左右却颠倒,它可通过奇次反射得到。2)一致像:物为右手坐标,像也为右手坐标,即物与像是完全一致的,它可通过偶次反射得到。二、平面镜的旋转当平面镜摆动角,反射光方向改变2,对摆动的角度起到了一个放大的作用。利用这一放大性质,即可以测量微小的角度或微位移。三、双平面镜成像如图3-1所示:双平面镜就是有二个反射镜构成,而且二者之间有一个夹角,现在有一支光AO射入,它经二个反射镜反射后最终射出,二条光线相共轭,现延长入射光及反射光,有一夹角,则有:双平面镜成像意义:有些二
11、次反射式棱镜就是基于这原理构成;可用双平面系统来转折光路,以取代重量大的棱镜。32平行平板 平行平板是光学仪器中用的较多的一类光学元件,最常见的有:保护玻璃、滤光片、分划板、载玻片、盖玻片。一、平行平板成象特性1、平行平板的定义:由二个互相平行的折射平面构成的光学元件。2、成象特性(见图3-2):1)光线经平行平板折射后光线方向不变;2)平行平板不使物体放大或缩小,其放大率 ,且象与物始终在同一侧;3)光线经平行平板后虽方向不变,但却要产生一定位移;4)同心光束经平板后变为非同心光束(平行平板成像是不完善的),越大,不完善程度也越大;5)轴上点近轴光经平板成象是完善的。图3-2二、等效空气层简
12、单的理解就是:所谓等效空气层是指功能与平行平板等效的空气平板。等效空气的厚度用表示,其表示形式为:33反射棱镜一、 反射棱镜类型1、反射棱镜构成原理:双面镜系统的原理2、术语1)棱镜的光轴:指光学系统的光轴在棱镜中的部分(它往往是由折线构成)2)光轴长度:光轴在棱镜内的总的几何长度;3)入射面:光线射入棱镜的平面;例如:AB面 出射面:光线射出棱镜的平面;例如:BC,DC工作面:出射面、入射面、反射面全称为工作面。例如:AB、BC、DC4)棱:工作面的交线。5)主截面(光轴截面):由光轴所决定的平面。 对复合棱镜而言,由于它由多个棱镜构成,光轴不在同一截面内,它可能有几个主截面。3、棱镜的分类
13、:1)简单棱镜:一般是由一块玻璃磨制而成,且所有工作面均与主截面垂直。 按反射面的个数多少又分为:一次反射棱镜;二次反射棱镜;三次反射棱镜。2)屋脊棱镜 屋脊棱镜的特点:一个屋脊相当于增加了一次反射(原来为奇次,成镜像,加上后变为偶次,成一致象)这样在不增加其它棱镜情况下就可以使象坐标与物坐标相一致。 常见的屋脊棱镜有:斯密特屋脊棱镜、直角屋脊棱镜、五角屋脊棱镜等。3)立方角锥棱镜特性:从底面射入任意方向的光线,经其反射后最终的出射光线平行入射光,仅有一个位移。4)复合棱镜 由二块以上的棱镜组合而成的棱镜系统,目的是为了实现单块透镜难以达到的功能。常见有:分光棱镜、分色棱镜、转象棱镜、普罗I型
14、等。二、棱镜系统的成象方向判断假设物为右手坐标系oxyz,象坐标为oxyz,则有:oz(出射坐标轴方向):与光轴方向一致;oy(垂直于主截面坐标轴方向):视屋脊个数而定, 偶数个屋脊或没有屋脊oy与oy方向相同;奇数个屋脊oy与oy方向相反。ox(平行于主截面坐标轴方向):视反射次数而定, 偶数次反射ox按右手坐标确定;奇数次反射ox按左手坐标确定。以上三条都是对单光轴棱镜而言,若为多光轴面的棱镜(复合棱镜),上述原则在各光轴面内均适用。三、反射棱镜的展开1、棱镜的展开在光学计算中,以一块等效的平行平板来取代棱镜的过程。2、展开的方法:在棱镜主截面内,按反射面的顺序,依次作棱镜的像,从而依次展
15、开(见图3-3)。图3-334 折射棱镜及光楔一、折射棱镜的偏转1、术语偏向角:入射光线与出射光线的夹角。折射棱:二个折射面的交线叫。折射角:二个折射面之间的夹角。主截面:垂直于折射棱的平面。2、最小偏向角 可见,偏向角的大小与折射角、棱镜折射率n、入射角L1有关,对于某一棱镜而言,其n,是一定值,此时只有一个变量就是L1,每给一个L1就有一个,L1不同,也不同,是个变量。称为最小值时的这个偏向角为最小偏向角m。 当为最小偏向角时,它具有如下特点:即, 当将代入到偏向角公式时,可得到: 可见,最小偏向角与n,有关,当一定时,最小偏向角的大小只与折射率n有关,对于不同的光材其角度不同,这样根据这
16、样的关系,利用该公式就能够求出相应棱镜材料的折射率,这就是通常所说的用最小偏向角测量折射率的方法。二、光楔及其应用1、光楔:是折射角很小的棱镜当用光垂直入射(近似于垂直入射)光楔时,偏向角为表示为: 可见对于光楔来讲,只要棱镜的,n是个定值,就是一个唯一确定的值。2、应用 光楔它也是比较常见的光学元件,主要用于小角度或微位移的测量当使用光楔进行测量时,常把二个完全相同的光楔组合起来使用,通过二光楔之间的相对转动以产生大小不同的偏向角来进行测量。三、棱镜色散35 光学材料 大家知道光学系统是由一系列的光学元件构成,无论是哪种光学元件都需要一定的材料加工而成。光学材料又分为:透射光学材料及反射光学
17、材料一、透射材料的光学特性1、分类: 1)光学玻璃:一般说来其透过波段为光学玻璃分为二类: 冕牌玻璃K:属于低折射率、低色散;火石玻璃F:属于高折射率、高色散。2)光学晶体:与光学玻璃相比其是波段范围相对较宽,较为常用的晶体有:石英及萤石3)光学塑料:主要用于精度要求不高的光学系统,适用于中低档低档,它的成本低,生产效率比较高,但象质不好,且热胀系数高。2、光学材料的特征量(5个)1)平均折射率nD:是指该介质对D=589.3nm 光所拥有的折射率的大小;2)平均色散:nF(兰)-nF(红)是指同一介质的兰光与红光的折射率之差;3)部分色散:是指任意二个波长的折射率之差;4)阿贝常数:;5)相
18、对色散:是部分色散与平均色散之比。以上这五个量都称为光学常数,在光学玻璃目录中都可以直接查出。二、反射材料反射材料性能的好坏主要是用反射率的大小来加以体现,反射率R越大,越好。 常见的反射膜层材料为:金、银、铜、铂、铝。第四章 光学系统中的光束限制本章重点:了解三种典型的目视光学仪器中的光束限制、系统的景深、远心光路和相关的概念。41 光阑在光学系统中的作用一、什么是光阑1、定义: 1)指光学系统中设置的一些带有内孔的金属薄片。 2)此外,光学系统中往往还有一些对光束起限制作用的孔径或框,也将之称为光阑。2、形状:光阑多为圆形、正方形、长方形,形状上的不同多因为是用途上的不同而导致的。3、光阑
19、作用:是用光阑内孔限制成象光束大小的以提高成象质量。二、光阑种类1、孔径光阑(有效光阑):指限制进入系统的成象光束口径的光阑。2、视场光阑:一般是指安置在物平面或象平面上,用以限制成象范围的光阑。 视场光阑的形状多为正方形、长方形。例如:显微系统中的分划板就是视场光阑,照相系统中的底片也是视场光阑。孔径光阑、视场光阑是二种最为常见的光阑,一般系统中都存在。42 入瞳、出瞳一、定义:1、入瞳:孔径光阑经前面的透镜组(光学系统)在物空间所成的象。如图4-1所示:图4-1 这是一个双透镜L1,L2构成的系统,现在两透镜之间放入一个小孔Q1QQ2,若此小孔为孔径光阑,且一物点A位于光轴上,则A点发出的
20、参与成象的光的最大孔径角U可由图中画出,并成象于A。则根据定义,入瞳即为光孔经前所成之象P1P2。2、出瞳:孔径光阑经后面的透镜组(光学系统)在象空间所成的象。 所以我们常把出瞳看作是入瞳经整个系统所成之象,入瞳与出瞳是相共轭的。3、判断入瞳、出瞳的方法:将光学系统中所有光学元件的通光口径分别对其前(后)面的光学系统成象到系统的物(象)空间,并根据各象位置及大小求出它们对轴上物(象)点的张角,其中张角最小者为入瞳(出瞳)。二、主光线、相对孔径1、主光线:通过入瞳中心的光线叫主光线。主光线的特点:主光线是物平面上各点发出的成象光束的中心轴线,对于理想光学系统而言,由于入瞳与出瞳相共轭,所以主光线
21、不仅通过入瞳中心也通过孔径光阑中心及出瞳中心。2、相对孔径():系统的入瞳直径与系统的焦距之比。 3、光瞳数(F数):相对孔径的倒数。4、数值孔径NA:是物方孔径角的正弦与物方折射率之积。43 视场光阑 一般光学系统只能有一个视场光阑,视场光阑可用二种方式来加以度量:一为长度度量;一为角度度量。一、视场度量的二种方式1、线视场:物方线视场2y;像方线视场2y 2、视场角:物方视场角;象方视场角 二、入射窗、出射窗1、入射窗:视场光阑经前面的光组在物空间所成的象;2、出射窗:视场光阑经后面的光组在象空间所成的象;入射窗决定了物方视场角的大小,出射窗决定了象方视场角的大小,入、出射窗之间是共轭的,
22、也可以将出射窗看作是入射窗经系统所成的象。3、判断入或出窗的方法 将光学系统中所有的光学元件的通光口径分别对其前(后)面的光学系统成象到系统的物(象)空间去,并根据各象的位置及大小求出它们对入(出)瞳中心的张角,其中张角最小者为入射窗(出射窗)。三、渐晕1、定义:轴外点发出的充满入瞳的光被透镜的通光口径所拦截的这种现象(见图4-2)。实际上,渐晕现象是普遍存在的,我们用不着片面的消除渐晕,这也是没必要的。一般系统允许有50的渐晕(拦一半),甚至30(拦一多半)的渐晕。2、消除渐晕的条件 只要入射窗(决定了物方视场的大小)与物平面重合;出射窗与象平面重合就可消除渐晕。图4-23、渐晕系数1)线渐
23、晕系数: 式中,2b是轴外点发出光束的宽度;2h是轴上点发出光束宽度;(它们都是在垂直于光轴的平面上度量) 若2b,2h在入瞳面内度量,则上式变为: 分子是斜光束在入瞳平面上垂直于光轴方向上的宽度;分母是入瞳直径。2)几何渐晕系数: 式中,Aw为斜光束在垂直于光轴方向度量的面积;AP为轴上光在垂直于光轴方向上度量的面积。3)几何渐晕系数KA与Kw关系:45 景深一、 景深:1、定义:在景象平面上所获得成清晰象的空间深度。2、产生原因:接收器件本身不完善性造成的。二、 公式1、远景、近景、远景平面、近景平面1)远景平面:能成清晰象的最远的平面;2)远景深度:远景对对准平面的距离叫远景深度(1);
24、3)近景平面:能成清晰象的最近的平面;4)近景深度:近景对对准平面的距离叫近景深度(2 )。2、公式:远景深度 近景深度 故有景深为:显然从公式中可见,景深与入瞳的大小或孔径角大小有关,入瞳直径越小,景深越大。所以为了获得大的景深,应令入瞳越小越好。三、讨论二种特殊情况的景深1、使对准平面以后整个空间都能成清晰像(即) 结论:当把照相物镜调焦于时,在景象平面上可得到自入瞳前无限远整个空间内的物体都能成清晰象。2、把物镜调焦于无限远(对准平面位于无限远) 根据已知条件有: 即对准平面位于无限远处,此时的近景平面位于结论:此时景深为自物镜前无限远整个空间都能成清晰像。4-5 远心光路远心光路是比较
25、重要也是在实际应用中使用比较多的一类光路类型。它主要用于计量仪器之中。一、物方远心光路1、定义:光学系统的物方主光线平行于光轴,主光线的会聚中心位于物方无限远处。那么物方远心光路有什么特点?采用起来有什么样的好处呢?下面以工具显微镜为例进行说明。2、光路(见图4-3): 图4-33、作用:消除或减少由于视差所引起的测量误差。二、象方远心光路1、定义:光学系统的象方主光线平行于光轴,主光线的会聚中心位于象方无限远处。2、作用:消除或减少测距误差。3、光路(见图4-4)图4-44-6典型系统的光束限制一、放大镜一般说来低倍的放大镜都是由平凸或双凸单透镜构成在讨论放大镜的光束限制时,应与人眼一起考虑
26、,在人眼与放大镜组成的系统中,对光束限制主要由眼瞳实现,眼瞳起到了非常重要的作用。二、望远镜1、 光瞳衔接原则 前一个系统的出瞳与后一系统的入瞳相重合,否则就会出现光束拦截现象。 对于人眼及望远系统来讲,所谓的衔接是指,望远系统的出瞳应该与人眼的入瞳(瞳孔)相重合。2、 光束限制 在望远系统中,一般情况下,物镜镜框是它的孔径光阑,也是系统的入瞳。它经目镜所成的像就是系统的出瞳,它一般与人眼瞳相重合。而出瞳的位置与目镜最后一面之间的距离就是出瞳距。分划板是系统的视场光阑。它放置于实像平面上,主要用于限制视场的大小。三、显微系统对低倍显微系统而言,其孔径光阑一般是物镜框(入瞳),而出瞳也与人眼眼瞳
27、相重合,其视场光阑则是分划板。 对高倍显微系统而言,其孔径光阑是专门设置的。 对显微系统而言,位于目镜F2附近。当然,对显微镜而言,它也必须满足光瞳衔接原则。四、照机系统可变光阑是系统的孔径光阑,其大小尺寸是可以调节变化的。底片是其视场光阑。第五章 光度学本章重点: 掌握光度学的基本术语及其单位、光传播过程中的光学量的变化规律及成像系统的像面照度。光能是系统设计中另一个非常重要的问题,这是因为我们在进行光学设计时,不单要考虑到系统的几何光学性能(例如:象的大小、正立、分辨率、象差的大小等)而且还必须考虑到光能的传输与计算问题。51 光度学中的基本量及单位一、辐射量(指描述电磁波的物理量)1、辐
28、射能(表示):指以电磁辐射形式发射、传输或接收的能量叫辐射能。单位:(J焦尔)辐射能是从辐射体发出的。常见的辐射体分为二大类:一次辐射源及二次辐射源。2、辐通量():单位时间内发射、传输、接收的辐射能叫辐通量。单位:W(瓦)对某一辐射体而言,它发出的辐射能具有一定的光谱分布(即由各种不同的波长组成),而每种不同的波长其辐通量也不同。 总的辐通量各个组成波长的辐通量总和。二、光学量1、接收器的光谱响应物体经过系统进行成象最终象都是由接收器类进行接收的。一般一类接收器只能感受某一确定的波长范围,且波长不同响应的程度也各不相同,有的灵敏一些,有的弱一些。对于目视光学系统而言,人眼是最后的接收器件,由
29、于人眼对不同的波长响应程度也相差非常大,它对的钠黄光最为敏感,而对其它的色光感觉要差一些。那么如何来表征不同波长所引起的不同的光感强度呢?为此引入了光谱光视效率的概念。光谱光视效率():指人眼对不同波长电磁辐射的反应程度。由于人眼对的光波最为敏感,光刺激最大,故的确定是以钠黄光为基准,其确定的原则如下:令钠黄光的=1,其它的波长的光谱光视效率值是相对于钠黄光得出的,很显然,其它光波的1。2、光通量:表示可见光对人眼的视觉刺激程度的量。单位:流明(lm)光通量实际上是辐通量的一部分,是辐射能中能引起人眼光刺激的那一部分辐通量,有: 根据经验有: 对于的钠黄光而言,在明视觉条件下(中等照度)的情况
30、下, 1W=683lm暗视觉的条件下:1W=1755lm ; 对于其它某一波长而言, 1W=683.lm考虑到不同波长的影响及1W与1 之间的换算关系,有:3、发光效率4、立体角:单位为球面度(sr)1)定义:以立体角的顶点为圆心,以 为半径作一个球面,则此立体角的边界在此球面上所截的面积dS除以半径的平方来标识之。2)数学形式为:上式是立体角用孔径角表示的形式,当孔径角U很小时,可用弧度值来取代正弦值,即:5、发光强度(Iv):某一方向上单位立体角内所辐射的光通量的大小。单位:坎德拉(cd)表征的是辐射体在空间某一方向上的发光状态。取单位立体角,在此单位立体角内所辐射出的光通量大小为,则有:
31、6、光照度(EV):它表示单位面积上所接收的光通量的大小。单位:lx(勒克斯)其数学表示形式为: 7、光出射度(MV):光源单位面积发出的光通量。单位:lx(勒克斯)1)对一次辐射源:2)对于二次辐射源:当均匀辐射且是大表面时,8、光亮度(Lv):体现的是投影到某一方向的单位面积、单位立体角内的光通量的大小。单位:尼特(cd/m2 坎德拉每平方米)数学形式为:52光传播过程中光学量的变化规律一、 点光源在与之距离为r的表面上形成的照度 现有一点光源S,发出光通量照明与之距离为r的表面,此表面面积为dA,则dA对S的张角为,且面元与点光源的距离为r。被照明的面元的法线与r的夹角为,则面元上的照度
32、为:二、 面光源在与之距离为r的表面上形成的照度式中,L为光源的光亮度。三、单一介质元光管内光亮度的传递1、元光管:二个面积很小的截面构成的直纹曲面包围的空间。元光管特点:当光在元光管内传递时,没有能量的损失。故有面元1发出的所有的光通量将全部到达面元2,即:进而可得到如下结论:当光在元光管内传播时,各截面上的光亮度相等。四、反射及折射后的光亮度1、反射后的光亮度反射后的光亮度L为反射率与入射光光亮度L之积。L=L 2、折射光的光亮度根据能量守恒定律,入射光能反射光能折射光能,即 故最终有:可见,折射光的光亮度不仅与反射率的大小有关,也与二介质的折射率密切相关。当反射率=0时,有:五、余弦辐射
33、体1、定义:我们已一再强调对于大多数发光体来说,其在各个方向的发光强度值并不相等,但某些发光面却可能沿循一定的规律,并非是完全混乱,无章可循的。如果这种发光体有这样一个规律,例如:这是一小发光面元dA,设其法线方向上的发光强度为IN,现与法线有一夹角的方向上其发光强度为从上式可见,虽然随着角度的不同,其不同方向上的发光强度并不相等,但却有规律,我们就称凡是符合该规律的发光全就称为余弦辐射体(郎伯辐射体)。从其数学形式上可以看出,的末端轨迹是个球面。 那么对于余弦辐射体,除了具有这样的规律之外,还有什么规律特点? 现在看一下光亮度,从亮度定义中知道, 下角标表示不同方向的光亮度光强度。当一个辐射体选定了,dA,IN是一个定值。 该式说明余弦辐射体虽然各方向上的发光强度是一变量,但各个方向上的光亮度却是相等的。 那么哪些物体是余弦辐射体,拥有相类似的特点?例如:一般的漫射表面都具有近似于余弦辐射体的特点;如平面钨丝灯等,这样通俗的理解是一般要经系统成象物体都可看作具有余弦辐射体的特点。那么对于具有余弦辐射体特性的发光体,其光通量与孔径角之间有什么关系?可采用如下公式进行计算。假设一个余弦辐射体向孔径角为U的立体角内辐射出光能,其光通量为多少?从L的定义出发, 故有:从上式可见,U是孔径角,其最大取值为900
限制150内