初中数学七年级下册五单元精品教案.doc
《初中数学七年级下册五单元精品教案.doc》由会员分享,可在线阅读,更多相关《初中数学七年级下册五单元精品教案.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流初中数学七年级下册五单元精品教案.精品文档.5.1.1 相交线教学目标 1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.毛 2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.重点、难点 重点:邻补角、对顶角的概念,对顶角性质与应用. 难点:理解对顶角相等的性质的探索.教学过程一、读一读,看一看 教师在轻松欢快的音乐中演示第五章章首图片为主体的课件. 学生欣赏图片,阅读其中的文字. 师生共同总结:我们生活的世界中,蕴涵着大
2、量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.二、观察剪刀剪布的过程,引入两条相交直线所成的角 教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化? 学生观察、思想、回答,得出: 握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大. 教师点评:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相
3、交线所成的角及其特征.三、认识邻补角和对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类? 学生思考并在小组内交流,全班交流. 当学生直观地感知角有“相邻”、“对顶”关系时, 教师引导学生用几何语言准确地表达,如: AOC和BOC有一条公共边OC,它们的另一边互为反向延长线. AOC和BOD有公共的顶点O,而是AOC的两边分别是BOD两边的反向延长线. 2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等. 3.学生根据
4、观察和度量完成下表:两直线相交所形成的角分类位置关系数量关系 教师再提问:如果改变AOC的大小, 会改变它与其它角的位置关系和数量关系吗? 4.概括形成邻补角、对顶角概念. (1)师生共同定义邻补角、对顶角. 有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角. 如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角. (2)初步应用. 练习1:下列说法,你同意吗?如果错误,如何订正. 邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上. 邻补角可看成是平角被过它顶点的一条射线分成的两个角.
5、 邻补角是互补的两个角,互补的两个角也是邻补角? 5.对顶角性质. (1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由. (2)教师把说理过程,规范地板书: 在图1中,AOC的邻补角是BOC和AOD,所以AOC与BOC互补,AOC 与AOD互补,根据“同角的补角相等”,可以得出AOD=BOC,类似地有AOC=BOD. 教师板书对顶角性质:对顶角相等. 强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系. (3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象.四、巩固运用1.例:如图,直
6、线a,b相交,1=40,求2,3,4的度数. 教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程. 2.练习: (1)课本P5练习.(2)补充:判断下列图中是否存在对顶角.五、作业 1.课本P9.1,2,P10.7,8. 2.选用课时作业设计.课时作业设计一、判断题:1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )二、填空题:1.如图1,直线AB、CD、EF相交于点O,BOE的对顶角是_,COF 的邻补角是_.若AOC:
7、AOE=2:3,EOD=130,则BOC=_. (1) (2)2.如图2,直线AB、CD相交于点O,COE=90,AOC=30,FOB=90, 则EOF=_.三、解答题:1.如图,直线AB、CD相交于点O. (1)若AOC+BOD=100,求各角的度数.(2)若BOC比AOC的2倍多33,求各角的度数.毛2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?课时作业设计答案:一、1. 2. 二、1.AOF,EOC与DOF,160 2.150 三、1.(1)分别是50,150,50,130 (2)分别是49,131,49,131.5.1.2 垂线(第一课时)垂线(一)
8、 教学目标 1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.毛 2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线, 并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线. 教学重点 两条直线互相垂直的概念、性质和画法. 教学过程 一、创设问题情境,研究垂直等有关概念 1.学生观察教室里的课桌面、黑板面相邻的两条边, 方格纸的横线和竖线,思考这些给大家什么印象? 在学生回答之后,教师指出:“垂直”两个字对大家并不陌生, 但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.2.教师出示相交线的模型,
9、演示模型,学生观察思考:固定木条a,转动木条, 当b的位置变化时,a、b所成的角a是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系? 教师在组织学生交流中,应学生明白:当b的位置变化时,角a从锐角变为钝角,其中a是直角是特殊情况.其特殊之处还在于:当a是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等. 3.师生共同给出垂直定义. 师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。 如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”, 如果一条直线是
10、另一条直线的“垂线”,则它们必定“互相垂直”。 4.垂直的表示法.垂直用符号“”来表示,结合课本图5.15说明“直线AB垂直于直线CD, 垂足为O”,则记为ABCD,垂足为O,并在图中任意一个角处作上直角记号,如图. 5.简单应用 (1)学生观察课本P6图5.1-6中的一些互相垂直的线条, 并再举出生活中其他实例. (2)判断以下两条直线是否垂直: 两条直线相交所成的四个角中有一个是直角; 两条直线相交所成的四个角相等; 两条直线相交,有一组邻补角相等; 两条直线相交,对顶角互补. 二、画图实践,探究垂线的性质 1.学生用三角尺或量角器画已知直线L的垂线. (1)已知直线L(教师在黑板上画一条
11、直线L),画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:还能画出L的垂线吗?能画几条?通过师生交流, 使学生明确直线L的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形. 教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直. (2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论? 教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直. 教师让学生通过画图操作所得两条结论合并成一条,并板书: 垂线性质1:过一点有且只有一条直线与已知
12、直线垂直. 2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图: (1)过点P画射线MN的垂线,Q为垂足; (2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;(3)过点P画线段AB的垂线,交线AB延长线于Q点. 学生画完图后,教师归结:画一条射线或线段的垂线, 就是画它们所在直线的垂线. 三、小结 本节学习了互相垂直、垂线等概念, 还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗? 四、作业 1.课本P7练习,P9.3,4,5,9.2.选用课时作业设计.一、判断题.1.两条直线互相垂直,则所有的邻补角都相等.( )2.一条直线不可能与两条相交直线都垂
13、直.( )3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互为垂直.( )二、填空题.1.如图1,OAOB,ODOC,O为垂足,若AOC=35,则BOD=_.2.如图2,AOBO,O为垂足,直线CD过点O,且BOD=2AOC,则BOD=_.3.如图3,直线AB、CD相交于点O,若EOD=40,BOC=130,那么射线OE 与直线AB的位置关系是_.三、解答题.1.已知钝角AOB,点D在射线OB上. (1)画直线DEOB;(2)画直线DFOA,垂足为F.2.已知:如图,直线AB,垂线OC交于点O,OD平分BOC,OE平分AOC.试判断OD 与OE的位置关系.3.你能用折纸方法过一
14、点作已知直线的垂线吗?5.1.2垂线(第2课时)垂线(二) 教学目标 1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力。毛 2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义, 并会度量点到直线的距离. 重点、难点 重点:“垂线段最短”的性质,点到直线的距离的概念及其简单应用. 难点:对点到直线的距离的概念的理解. 教学过程 一、创设问题情境,探究垂线段最短的垂线性质 1.教师展示课本图5.1-8,提出问题:要把河中的水引到农田P处, 如何挖渠能使渠道最短? 学生看图、思考. 2.教师以问题串形式,启发学生思考. (1)问题1,上学期
15、我们曾经学过什么最短的知识,还记得吗? 学生说出:两点间线段最短. (2)问题2,如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线L,那么原问题就是怎么的数学问题. 问题2使学生能用数学眼光思考:在连接直线L外一点P与直线L 上各点的线段中,哪一条最短? 3.教师演示教具,给学生直观的感受. 教具如图:在硬纸板上固定木条L,L外一点P,转动的木条a一端固定在点P. 使木条L与a相交,左右摆动木条a,L与a的交点A随之变化,线段PA 长度也随之变化.PA最短时,a与L的位置关系如何?用三角尺检验. 4.学生画图操作,得出结论. (1)画出直线L,L外一点P; (
16、2)过P点出POL,垂足为O; (3)点A1,A2,A3在L上,连接PA、PA2、PA3;(4)用叠合法或度量法比较PO、PA1、PA2、PA3长短. 5.师生交流,得出垂线的另一条性质. 教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短. 简单说成:垂线段最短. 关于垂线段教师可让学生思考: (1)垂线段与垂线的区别联系. (2)垂线段与线段的区别与联系. 二、点到直线的距离 1.师生根据两点间的距离的意义给出点到直线的距离命名. 结合课本图形(图5.1-9),深入认识垂线段PO:POL,POA=90,O为垂足,垂线段PO的长度比其他线段PA1、PA2中是最短的. 按照两点间的距
17、离给点到直线的距离命名,教师板书: 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离. 在图5.1-9中,PO的长度是点P到直线L的距离,其余结论PA、PA2长度都不是点P到L的距离. 2.初步应用. 练习1:已知直线a、b,过点a上一点A作ABa,交b于点B,过B作BCb交a 上于点C.请说出哪一条线段的长是哪一点到哪一条直线的距离? 并且用刻度尺测量这个距离. 练习2:课本中水渠该怎么挖?在图上画出来.如果图中比例尺为1:100000, 水渠大约要挖多长? 练习3:判断正确与错误,如果正确,请说明理由,若错误,请订正. (1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的
18、距离. (2)如图,线段AE是点A到直线BC的距离. (3)如图,线段CD的长是点C到直线AB的距离. 学生独立完成,教师组织学生交流、评价. 三、作业 1.课本P9.6,P10.10,11,12,P11观察与猜想.第二课时作业设计 一、填空题. 1.如图,ACBC,C为垂足,CDAB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C到AB的距离是_,点A到BC的距离是_,点B到CD 的距离是_,A、B两点的距离是_. 2.如图,在线段AB、AC、AD、AE、AF中AD最短.小明说垂线段最短, 因此线段AD的长是点A到BF的距离,对小明的说法,你认为_. 二、
19、解答题. 1.(1)用三角尺画一个是30的AOB,在边OA上任取一点P,过P作PQOB, 垂足为Q,量一量OP的长,你发现点P到OB的距离与OP长的关系吗? (2)若所画的AOB为60角,重复上述的作图和测量,你能发现什么? 2.如图,分别画出点A、B、C到BC、AC、AB的垂线段,再量出A到BC、点B到AC、 点C到AB的距离.作业答案:一、1.4.8,6,6.4,10 2.小明说法是错误的,因为AD与BE是否垂直无判定. 二、1.(1)PQ=OP (2)OQ=OP 2.略.毛毛5.2.1 平行线 教学目标 1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.毛
20、2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论. 3.会用符号语方表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线. 重点、难点 重点:探索和掌握平行公理及其推论. 难点:对平行线本质属性的理解,用几何语言描述图形的性质. 课前准备 分别将木条a、b与木条c钉在一起,做成图所示的教具. 教学过程 一、创设问题情境 1.复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系? 学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 年级 下册 单元 精品 教案
限制150内