《单片机控制的三相全控桥触发系统设计.doc》由会员分享,可在线阅读,更多相关《单片机控制的三相全控桥触发系统设计.doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流单片机控制的三相全控桥触发系统设计.精品文档.目 录摘要引言1 11 研究背景和意义1111 晶闸管的发展现状1 112 电力电子技术的前景2 113 晶闸管的应用2第二章 三相可控整流电路晶闸管的介绍521 三相桥式整流电路晶闸管的特征5 211 晶闸管的开关特点5212 晶闸管的几种导通方式6 213 晶闸管的基本特性6 214 晶闸管的触发6第三章 三相桥式全控整流电路731 三相桥式全控整流电路电阻性负载732 三相桥式全控整流电路电感性负载12第四章 AT89C52芯片介绍1641 AT89C52主要性能参数1642 AT89C52
2、引脚及内部器件功能说明17第五章 控制系统原理4551 系统结构框图4552 触发器硬件组成4553 移相触发脉冲的控制原理47第六章 系统硬件电路器件选择5061 晶闸管的参数及其选择50 611 晶闸管及平波电抗器50 612 晶闸管的保护5162 具体器件的计算与选择52结论65致谢66参考文献67摘要 本文主要介绍基于MCS51系列单片机AT89C51芯片控制的三相桥式全控整流电路的主电路和触发电路的原理及控制电路,软件部分由C51高级语言编程。具体运行由工频三相电压经变压器后在芯片控制下在不同的时刻发出不同的脉冲信号去控制相应的SCR可控硅整流为直流电给负载供电。此种控制方式其主要优
3、点是输出波形稳定和可靠性高抗干扰强的特点。触发电路结构简单,控制灵活,温度影响小,控制精度可通过软件补偿,移相范围可任意调节等特点,目前已获得工业界的广泛认可。并将在许多的工业控制中得到很好的应用。 关键词:晶闸管 MC-51单片机 触发角 同步信号第一章 引 言1.1 研究背景和意义 基于AT89C51单片机的三相整流触发控制系统。是应用于电力领域的电子技术,即使用电力电子器件对电能进行变换和控制的技术。12 晶闸管的发展现状晶闸管出现前的时期,用于电力变换的电子技术已经存在:1904年出现了电子管(Valve),能在真空中对电子流进行控制,并应用于通信和无线电,从而开了电子技术之先河。 后
4、来出现了水银整流器,其性能和晶闸管很相似。在30年代到50年代,是水银整流器发展迅速并大量应用的时期。它广泛用于电化学工业、电气铁道直流变电所以及轧钢用直流电动机的传动,甚至用于直流输电。各种整流电路、逆变电路、周波变流电路的理论己经发展成熟并广为应用。在晶闸管出现以后的相当一段时期内,所使用的电路形式仍然是这些形式。交流电变为直流电的方法除水银整流器外,还有发展更早的电动机一直流发电机组,即变流机组。和旋转变流机组相对应,静止变流器的称呼从水银整流器开始并沿用至今。1947年美国贝尔实验室发明晶体管(Transistor),引发了电子技术的一场革命;晶闸管(1957年)SCR(Silicon
5、 Controlled Rectifier)可通过门极控制开通,但通过门极不能控制关断,属于半控型器件目前由于其能承受的电压、电流容量仍是目前器件中最高的,而且工作可靠,所以许多大容量场合仍大量使用。13 电力电子技术的前景电力电子器件发展的目标是:大容量、高频率、易驱动、低损耗、小体积(高芯片利用率)、模块化。 新的控制技术的使用,以减小电力电子器件的开关损耗,如软开关技术;通过谐振电路使得器件在零电压(ZVS)或零电流(ZCS)的状态下进行开关。电力电子应用系统向着高效、节能、小型化和智能化的方向发展。14 晶闸管的应用一般工业:直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波
6、电源都是电力电子装置;近年来电力电子变频技术的迅速发展,使交流电机的调速性能可与直流电机媲美,交流调速技术大量应用并占据主导地位。几百W到数千KW的变频调速装置,软起动装置等;电化学工业大量使用直流电源,如电解铝、电解食盐水等。冶金工业中的高频或中频感应加热电源、淬火电源及直流电弧炉电源等场合,需要大容量整流电源。电镀装置也需要整流电源。交通运输:电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术电动汽车的电机靠电力电子装置进行电力变换和驱动控制
7、,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,近年来交流变频调速成为主流。电力系统:电力电子技术在电力系统中有非常广泛的应用。最终用户在使用电能时常常需要进行预处理。如降压、滤波、无功补偿等;据估计,发达国家在用户最终使用的电能中有60以上至少经过一次电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。毫不夸张地说,离开电力电子技术,电力系统的现代化是不可想
8、象的直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变流装置近年发展起来的柔性交流输电可以大幅度提高电网输电能力和稳定性;手段:快速、精确、连续地控制大容量有功和无功等参数实现对系统潮流变化、功率流向、输送能力、阻尼振荡的性能加以改进和提高。如有源滤波器(APF Active Power Filter)一可进行用户端的无功补偿和谐波抑制。不间断电源(UPS)和各种开关电源:这一类的应用最为普遍各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在己改为采用全控型器件的高频开关电源。大型计算机所需的
9、工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在己逐渐取代了线性电源。家用电器:照明在家用电器中有卜分突出的地位。由于电力电子照明电源体积小、发光效率高、可节省大量能源,通常被称为“节能灯”,正逐步取代传统的白炽灯和日光灯变频空调器是家用电器中应用电力电子技术的典型例子之一。电视机、音响设备、家用计算机等电子设备的电源部分也都需要电力电子技术。此外,有些洗衣机、电冰箱、微波炉等电器也应用了电力电子技术。 新能源的开发和利用:传统的发电方式是火力发电、水力发电以及后来兴起的核能发电。能源危机后,各
10、种新能源、可再生能源及新型发电方式越来越受到重视。其中太阳能发电、风力发电的发展较快,燃料电池更是备受关注。太阳能发电和风力发电受环境的制约,发出的电力质量较差,常需要储能装置缓冲,需要改善电能质量,这就需要电力电子技术。当需要和电力系统联网时,也离不开电力电子技术为了合理地利用水力发电资源,近年来抽水储能发电站受到重视。其中的大型电动机的起动和调速都需要电力电子技术。超导储能是未来的一种储能方式,它需要强大的直流电源供电,这也离不开电力电子技术核聚变反应堆在产生强大磁场和注入能量时,需要大容量的脉冲电源,这种电源就是电力电子装置。科学实验或某些特殊场合,常常需要一些特种电源,这也是电力电子技
11、术的用武之地。第二章 三相可控整流电路晶闸管的介绍21 三相桥式整流电路晶闸管的特征211 晶闸管的开关特点:(1)当SCR的阳极和阴极电压UAK0,即EA下正上负,无论门极G加什么电,SCR始终处于关断状态。 (图21)(2)当UAK0时,只有EGK0,SCR才能导通。说明SCR具有正向阻断能力。(3)SCR一旦导通,门极G将失去控制作用,即无论EG如何,一均保持导通状态。SCR导通后的管压降为1V左右,主电路中的电流I由R和RW以及EA的大小决定。(4)当UAK0时,无论SCR原来的状态,都会使R熄灭,即此时SCR关断。其实,在I逐渐降低(通过调整RW)至某一个小数值时,刚刚能够维持SCR
12、导通。如果继续降低I,则SCR同样会关断。该小电流称为SCR的维持电流。综上所述:SCR导通条件: UAK0同时UGK0,由导通关断的条件:使流过SCR的电流降低至维持电流以下。(一般通过减小EA,直至EA0来实现。)212 晶闸管的几种导通方式:(1)正常触发导通:UAK0,同时UGK0。(2)阳极电压作用:当UAK上升至某个大数值,使V2的漏电流由于雪崩效应而加大,同时由于正反馈而使漏电流放大,最终使SCR饱和导通。(3)dUdt作用:如果UAK以高速率上升,则在中间结电容上产生的电流可以引起导通。(4)温度作用:温度上升,V1,V2的漏电流加大,引起导通。(5)光触发:当强光直接照射在硅
13、片上,产生电子空穴对,在电场的作用,产生触发SCR的电流。目前,有一些场合使用这种方式来触发SCR,高压直流输电(HVDC)。这种方式可以保证控制电路和主电路之间有良好的绝缘。这种SCR又称为光控晶闸管。213 晶闸管的基本特性:(1)承受反向电压时,无论门极是否有触发电流,晶闸管都不会导通。(2)承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。(3)晶闸管一旦导通,门极就失去控制作用。(4)要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以。从这个角度可以看出,晶闸管是一种电流控制型的电力电子器件。214 晶闸管的触发:(1)作用:产生符合要求的门极触发脉冲,保证晶闸管在需
14、要的时刻由阻断转为导通。(2)广义上讲,晶闸管触发电路还包括对其触发时刻进行控制的相位控制电路。(3)晶闸管触发电路应满足下列要求:触发脉冲的宽度应保证晶闸管可靠导通门极电流应大于擎住电流;触发脉冲应有足够的幅度;不超过门极电压、电流和功率,且在可靠触发区域之内;应有良好的抗干扰性能、温度稳定性及与主电路的电气隔离。第三章 三相桥式全控整流电路31 三相桥式全控整流电路电阻性负载 (图31三相桥式全控整流电路原理图)三相全桥的特点: 负载容量较大,或要求直流电压脉动较小、易滤波时使用三相整流电路。 应用最为广泛。 共阴极组阴极连接在一起的3个晶闸管(VT1,VT3,VT5)。 共阳极组阳极连接
15、在一起的3个晶闸管(VT4,VT6,VT2)。 注意编号顺序:1、3、5和4、6、2,一般不特别说明,均采用这样的编号顺序。 由于零线平均电流为零,所以可以不用零线。对于每相二次电源来说,每个工作周期中,即有电流,也有负电流,所以不存在直流磁化问题,提高了绕组利用率。1 三相桥式全控整流电路带电阻负载=0时的情况图32 三相桥式全控整流电路(带电阻负载=0时的波形)1) 带电阻负载时的工作情况(1)=0时的情况对于共阴极阻的3个晶闸管,阳极所接交流电压值最大的一个导通。对于共极组的3个晶闸管,阴极所接交流电压值最低(或者说负得最多)的导通。任意时刻共阳极组和共阴极组中各有1个SCR处于导通状态
16、。其余的均处于关断状态。触发角的起点,仍然是从自然换相点开始计算,注意正负方向均有自然换相点。从线电压波形看,Ud为线电压中最大的一个,因此Ud波形为线电压的包络线。表33三相桥式全控整流电路电阻负载=0时晶闸管工作情况时段共阴极组中导通的晶闸管VT1VT1VT3VT3VT5VT5共阳极组中导通的晶闸管VT6VT2VT2VT4VT4VT6整流输出电压UdUaUb=UabUaUc=UacUbUc=UbcUbUa =UbaUcUb=UcaUcUb =Ucb(2)三相桥式全控整流电路的特点:(三相全控桥) 两个同时导通形成供电回路,其中共阴极组和共阳极组各有一个导通,且不能为同相的两个否则没有输出。
17、 对触发脉冲的要求: 按VT1VT2VT3VT4VT5VT6的顺序,相位依次差60。 共阴极组VT1、VT3、VT5的脉冲依次差120,共阳极组VT4、VT6、VT2也依次差120。 同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180。 Ud一周期脉动6次,每次脉动的波形都一样,所以三相全桥电路称为6脉波整流电路。 需保证同时导通的2个晶闸管均有脉冲(采用两种方法:一种是宽脉冲触发(大于60)。 另一种是双脉冲触发(常用):在Ud的6个时间段,均给应该导通的SCR提供触发脉冲,而不管其原来是否导通。所以每隔60就需要提供两个触发脉冲。 实际提供脉冲的顺序为:
18、VT1,VT2VT2,VT3VT3,VT4VT4,VT5VT5,VT6VT6,VT1VT1,VT2,不断重复。 晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同为:UFM =URM=2.45 U22 三相桥式全控整流电路带电阻负载=30时的情况 图34 三相桥式全控整流电路(带电阻负载=30时的波形)晶闸管起始导通时刻推迟了30,组成的每一段线电压因此推迟30。从Ut1开始把一周期等分为6段,Ud波形仍由6段线电压构成,每一段导通晶闸管的编号等仍符合表3-3的规律。变压器二次侧电流iu波形的特点:在VT1处于通态的120期间,iu为正,iu波形的形状与同时段的Ud波
19、形相同,在VT4处于通态的120期间,iu波形的形状也与同时段的Ud波形相同,但为负值。3 三相桥式全控整流电路带电阻负载=60时工作情况Ud波形中每段线电压的波形继续后移,平均值继续降低。=60时Ud出现为零的点。(因为在该点处,线电压为零)4 三相桥式全控整流电路带电阻负载60时工作情况当60时,如=90时电阻负载情况下的工作波形如图35所示:图35三相桥式全控整流电路带电阻负载=90时的波形小结 当60时,Ud波形均连续,对于电阻负载,id波形与Ud波形一样,也连续; 当60时,Ud波形每60中有一段为零,Ud波形不能出现负值; 带电阻负载时三相桥式全控整流电路角的移相范围是120。32
20、 三相桥式全控整流电路电感性负载1 三相桥式全控整流电路电感性负载时的工作情况: 当60时:Ud波形连续,工作情况与带电阻负载时十分相似,各晶闸管的通断情况、输出整流电压Ud波形、晶闸管承受的电压波形等都一样;区别在于:由于负载不同,同样的整流输出电压加到负载上,得到的负载电流波形不同。电感性负载时,由于电感的作用,使得负载电流波形变得平直,当电感足够大的时候,负载电流的波形可近似为一条水平线。 图36三相桥式全控整流电路带电感性负载=0时的波形 图37三相桥式全控整流电路带电感性负载=30时的波形 图38三相桥式全控整流电路带电感性负载=60时的波形 图39三相桥式全控整流电路带电感性负载=
21、90时的波形(1)当60时:电感性负载时的工作情况与电阻负载时不同,Ud时波形不会出现负的部分,而电感性负载时,由于电感L的作用,Ud波形会出现负的部分;带电感性负载时,三相桥式全控整流电路的角移相范围为90。因为在=90时,Ud波形上下对称,平均值为零。(2)基本参数关系当整流输出电压连续时(即带电感性负载或带电阻负载60时)的平均值为:Ud= U2Sintd(t) =2.34U2cos 带电阻负载且60时,整流电压平均值为:Ud= U2Sintd(t) =2.34U2 1cos ( )输出电流平均值为:Id = 2 三相桥式全控整流的电流有效值 当三相整流变压器供电,变压器次级接为星形,初
22、级接三角形以减少三次谐波的影响,带电感性负载时,变压器二次侧电流波形,为正负半周各宽120前沿相差180的矩形波,其有效值为:I2=Id= 0.816 Id 晶闸管电压、电流等的定量分析与三相半波时一致。三相桥式全控整流电路接反电势电感性负载时,在负载电感足够大足以使负载电流连续的情况下,电路工作情况与电感性负载时相似,电路中各处电压、电流波形均相同,仅在计算Id时有所不同,接反电动势电感性负载时的Id为:Id = 、小结:变压器二次侧每相有两个匝数相同、极性相反(同名端相反)的绕组。分别构成a、b、c和-a、-b、-c两组。电路中设置了平衡电抗器来保证两组三相半波电路能同时导电,每相的触发脉
23、冲,从第一个正自然换相点开始计算起,分别为1、3、5和2、4、6。这样,在不同的时刻导通的SCR分别为6,1、1,2、2,3、3,4、4,5、5,6、6,1。实际上,通过每个时刻的等效电路,发现和分析变压器漏感作用时的电路十分类似,输出电压Ud的瞬时电压为导通两相电压瞬时值的平均值。第四章 AT89C51芯片介绍AT89C51是一种带4K字节闪存可编程可擦除只读存储器(FPEROMFlash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C2051是一种带2K字节闪存可编程可擦除只读存储器的单片
24、机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。外形及引脚排列如图所示 41 AT89C51主要性能参数:与MCS-51 兼容 4K字节可编程闪烁存储器 寿命:1000写/擦循环 数据保留时间:10年 全静态工作:0Hz-24MHz 三级程序存储器锁定 1288位内部RAM 32可编程I/O
25、线 两个16位定时器/计数器 5个中断源 可编程串行通道 低功耗的闲置和掉电模式 片内振荡器和时钟电路功能特性概述:AT89C51提供以下标准功能:8K字节Flash闪速存储器,256字节内部RAM,32个I/O口线,3个16位定时/计数器,一个6向量两级终端结构,一个全双工串行通信口,片内振荡及时钟电路。同时,AT89C52可降至0Hz的静态逻辑操作,并支持两种软件可选的节电模式。空闲方式停止CPU的工作,但是允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其他所有部件工作直到下一个硬件复位。42 AT89C51引脚及内部器件功能说明
26、: VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P0口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。 P2口:
27、P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。 P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部
28、上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。 P3口也可作为AT89C51的一些特殊功能口,如下表所示: 口管脚 备选功能 P3.0 RXD(串行输入口) P3.1 TXD(串行输出口) P3.2 /INT0(外部中断0) P3.3 /INT1(外部中断1) P3.4 T0(记时器0外部输入) P3.5 T1(记时器1外部输入) P3.6 /WR(外部数据存储器写选通) P3.7 /RD(外部数据存储器读选通) P3口同时为闪烁编程和编程校验接收一些控制信号。 RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时
29、间。 ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。 /PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有
30、效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。 /EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。 XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。 XTAL2:来自反向振荡器的输出。 振荡器特性: XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL
31、2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。 芯片擦除:整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。 此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU停止工作。但RAM,定时器,计数器,串口和中断系统仍在工作。在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复
32、位为止。 串口通讯 单片机的结构和特殊寄存器,这是你编写软件的关键。至于串口通信需要用到那些特殊功能寄存器呢,它们是SCON,TCON,TMOD,SCON等,各代表什么含义呢? SBUF 数据缓冲寄存器这是一个可以直接寻址的串行口专用寄存器。有朋友这样问起过“为何在串行口收发中,都只是使用到同一个寄存器SBUF?而不是收发各用一个寄存器。”实际上SBUF 包含了两个独立的寄存器,一个是发送寄存,另一个是接收寄存器,但它们都共同使用同一个寻址地址99H。CPU 在读SBUF 时会指到接收寄存器,在写时会指到发送寄存器,而且接收寄存器是双缓冲寄存器,这样可以避免接收中断没有及时的被响应,数据没有被
33、取走,下一帧数据已到来,而造成的数据重叠问题。发送器则不需要用到双缓冲,一般情况下我们在写发送程序时也不必用到发送中断去外理发送数据。操作SBUF寄存器的方法则很简单,只要把这个99H 地址用关键字sfr定义为一个变量就可以对其进行读写操作了,如sfr SBUF = 0x99;当然你也可以用其它的名称。通常在标准的reg51.h 或at89x51.h 等头文件中已对其做了定义,只要用#include 引用就可以了。 SCON 串行口控制寄存器通常在芯片或设备中为了监视或控制接口状态,都会引用到接口控制寄存器。SCON 就是51 芯片的串行口控制寄存器。它的寻址地址是98H,是一个可以位寻址的寄
34、存器,作用就是监视和控制51 芯片串行口的工作状态。51 芯片的串口可以工作在几个不同的工作模式下,其工作模式的设置就是使用SCON 寄存器。它的各个位的具体定义如下: SM0 SM1 SM2 REN TB8 RB8 TI RI SM0、SM1 为串行口工作模式设置位,这样两位可以对应进行四种模式的设置。串行口工作模式设置。 SM0 SM1 模式 功能 波特率 0 0 0 同步移位寄存器 fosc/12 0 1 1 8位UART 可变 1 0 2 9位UART fosc/32 或fosc/64 1 1 3 9位UART 可变 在这里只说明最常用的模式1,其它的模式也就一一略过,有兴趣的朋友可以
35、找相关的硬件资料查看。表中的fosc 代表振荡器的频率,也就是晶振的频率。UART 为(Universal Asynchronous Receiver)的英文缩写。 SM2 在模式2、模式3 中为多处理机通信使能位。在模式0 中要求该位为0。 REM 为允许接收位,REM 置1 时串口允许接收,置0 时禁止接收。REM 是由软件置位或清零。如果在一个电路中接收和发送引脚P3.0,P3.1 都和上位机相连,在软件上有串口中断处理程序,当要求在处理某个子程序时不允许串口被上位机来的控制字符产生中断,那么可以在这个子程序的开始处加入REM=0 来禁止接收,在子程序结束处加入REM=1 再次打开串口接
36、收。大家也可以用上面的实际源码加入REM=0 来进行实验。 TB8 发送数据位8,在模式2 和3 是要发送的第9 位。该位可以用软件根据需要置位或清除,通常这位在通信协议中做奇偶位,在多处理机通信中这一位则用于表示是地址帧还是数据帧。 RB8 接收数据位8,在模式2 和3 是已接收数据的第9 位。该位可能是奇偶位,地址/数据标识位。在模式0 中,RB8 为保留位没有被使用。在模式1 中,当SM2=0,RB8 是已接收数据的停止位。 TI 发送中断标识位。在模式0,发送完第8 位数据时,由硬件置位。其它模式中则是在发送停止位之初,由硬件置位。TI 置位后,申请中断,CPU 响应中断后,发送下一帧
37、数据。在任何模式下,TI 都必须由软件来清除,也就是说在数据写入到SBUF 后,硬件发送数据,中断响应(如中断打开),这时TI=1,表明发送已完成,TI 不会由硬件清除,所以这时必须用软件对其清零。 RI 接收中断标识位。在模式0,接收第8 位结束时,由硬件置位。其它模式中则是在接收停止位的半中间,由硬件置位。RI=1,申请中断,要求CPU 取走数据。但在模式1 中,SM2=1时,当未收到有效的停止位,则不会对RI 置位。同样RI 也必须要靠软件清除。常用的串口模式1 是传输10 个位的,1 位起始位为0,8 位数据位,低位在先,1 位停止位为1。它的波特率是可变的,其速率是取决于定时器1 或
38、定时器2 的定时值(溢出速率)。AT89C51 和AT89C2051 等51 系列芯片只有两个定时器,定时器0 和定时器1,而定时器2是89C52 系列芯片才有的。 波特率在使用串口做通讯时,一个很重要的参数就是波特率,只有上下位机的波特率一样时才可以进行正常通讯。波特率是指串行端口每秒内可以传输的波特位数。有一些初学的朋友认为波特率是指每秒传输的字节数,如标准9600 会被误认为每秒种可以传送9600个字节,而实际上它是指每秒可以传送9600 个二进位,而一个字节要8 个二进位,如用串口模式1 来传输那么加上起始位和停止位,每个数据字节就要占用10 个二进位,9600 波特率用模式1 传输时
39、,每秒传输的字节数是960010960 字节。51 芯片的串口工作模式0的波特率是固定的,为fosc/12,以一个12M 的晶振来计算,那么它的波特率可以达到1M。模式2 的波特率是固定在fosc/64 或fosc/32,具体用那一种就取决于PCON 寄存器中的SMOD位,如SMOD 为0,波特率为focs/64,SMOD 为1,波特率为focs/32。模式1 和模式3 的波特率是可变的,取决于定时器1 或2(52 芯片)的溢出速率。那么我们怎么去计算这两个模式的波特率设置时相关的寄存器的值呢?可以用以下的公式去计算。 波特率(2SMOD32)定时器1 溢出速率 上式中如设置了PCON 寄存器
40、中的SMOD 位为1 时就可以把波特率提升2 倍。通常会使用定时器1 工作在定时器工作模式2 下,这时定时值中的TL1 做为计数,TH1 做为自动重装值 ,这个定时模式下,定时器溢出后,TH1 的值会自动装载到TL1,再次开始计数,这样可以不用软件去干预,使得定时更准确。在这个定时模式2 下定时器1 溢出速率的计算公式如下: 溢出速率(计数速率)/(256TH1) 上式中的“计数速率”与所使用的晶体振荡器频率有关,在51 芯片中定时器启动后会在每一个机器周期使定时寄存器TH 的值增加一,一个机器周期等于十二个振荡周期,所以可以得知51 芯片的计数速率为晶体振荡器频率的1/12,一个12M 的晶
41、振用在51 芯片上,那么51 的计数速率就为1M。通常用11.0592M 晶体是为了得到标准的无误差的波特率,那么为何呢?计算一下就知道了。如我们要得到9600 的波特率,晶振为11.0592M 和12M,定时器1 为模式2,SMOD 设为1,分别看看那所要求的TH1 为何值。代入公式: 11.0592M 9600(232)(11.0592M/12)/(256-TH1) TH1250 12M 9600(232)(12M/12)/(256-TH1) TH1249.49 上面的计算可以看出使用12M 晶体的时候计算出来的TH1 不为整数,而TH1 的值只能取整数,这样它就会有一定的误差存在不能产生
42、精确的9600 波特率。当然一定的误差是可以在使用中被接受的,就算使用11.0592M 的晶体振荡器也会因晶体本身所存在的误差使波特率产生误差,但晶体本身的误差对波特率的影响是十分之小的,可以忽略不计。第五章 控制系统原理51系统结构框图 单片机控制的晶闸管触发系统控制部分主要由AT89C51系列单片机、同步信号检测电路、触发脉冲发生电路、44输入键盘、LED显示电路部分组成,如下图所示,单片机通过检测电路获知同步信号,依据所要控制的三相全控整流电路要求,通过编程实现预定的程序流程,在相应时间段内通过单片机I/O端输出触发脉冲信号。 (系统原理框图)52 触发器硬件组成 图1给出单片机控制的移
43、相触发脉冲控制系统硬件电路图。单片机选用AT89C51,共有40个引脚,8KB内存。同步信号的输入经电阻R1,R1起到限流和保护的作用,正弦同步信号经VD1和VD2两个限制比较器输入电压的箝位二极管削波后,送入比较器LM339的输入端,LM339输出为180与电源相位相同的方波。同步检测信号发生正跳变时,由于AT89C51采用低电平为有效触发方式,所以信号经反相器反相以中断方式向单片机的INT0(引脚12)提供同步指令,从表面上看好像是外部中断信号输入,实际上是要量脉冲的宽度,这决定于信号到来的时间。使用该比较电路,无论输入的同步电压信号高还是低,LM339的输出信号都能较准确的反映同步输入信号的过零点,R2和C3对输出信号进行滤波,以避免输出信号出现波动。由于AT89C51为CMOS 8位单片机,所以该触发器内部均为8位数字量计算,其触发延迟角范围为0180,控制精度为07,虽然控制精度受到内部运算位数的限制,但足以满足一般控制要求。(图1 )由于AT89C51控制的为阻感性负载其移相范围090之间,所以P0口接显示两位动态显示的LED显示器。P1口作为4X4键盘接口,其中F键作为确认键。由于键盘存在一定的局限性每输入触发角时必须先确认一次然后在输入想要按下的键
限制150内