《华师大版八年级数学下册教案全集.doc》由会员分享,可在线阅读,更多相关《华师大版八年级数学下册教案全集.doc(81页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流华师大版八年级数学下册教案全集.精品文档.第17章 分式一、概括:形如(A、B是整式,且B中含有字母,B0)的式子,叫做分式.其中A叫做分式的分子,B叫做分式的分母.整式和分式统称有理式, 即有理式整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1); (2); (3); (4).例2 当取什么值时,下列分式有意义?(1); (2).四、练习:P5习题17.1第3题(1)(3)1判断下列各式哪些是整式,哪些是分式?9x+4, , , , ,2. 当x取何值时,下列分式有意义? (1) (2) (3)3. 当x为何值时,分
2、式的值为0?(1) (2) (3) 17.1.2 分式的基本性质1、分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是: ( 其中M是不等于零的整式)。与分数类似,根据分式的基本性质,可以对分式进行约分和通分.2、例3约分(1);(2)4、例4通分(1),;(2),; (3),17.2 分式的运算17.2.1 分式的乘除法一、复习与情境导入1、(1) :什么叫做分式的约分?约分的根据是什么?(2):下列各式是否正确?为什么?2、尝试探究:计算:(1);(2).二、例题:例1计算:(1);(2).例2计算:.四、思考怎样进行分式的乘方呢?试计算:17.
3、2.2 分式的加减法一、实践与探索1、回忆:同分母的分数的加减法法则:同分母的分数相加减,分母不变,把分子相加减。2、试一试:计算:(1);(2)3、总结一下怎样进行分式的加减法?概括同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,变为同分母的分式,然后再加减.二、例题1、例3计算:2、例4 计算:.17.3 可化为一元一次方程的分式方程(1)一、问题情境导入轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.二、例题:1、例1解方程:.2、例2解方程:.17.3 可化为一元一次方程的分式方程(2)1、复
4、习练习解下列方程:(1) (2)例3某校招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?17.4.1零指数幂与负整指数幂一、复习并问题导入问题1 在13.1中介绍同底数幂的除法公式时,有一个附加条件:mn,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m = n或mn时,情况怎样呢?这就是说:任何不等于零的数的零次幂都等于1.这就是说,任何不等于零的数的n (n为正整数)次幂,等于这个数的n次
5、幂的倒数.四、例题:1、例1计算:(1)3-2; (2)2、例2 用小数表示下列各数:(1)10-4;(2)2.110-5.17.4.2科学记数法教学目标:1、使学生掌握不等于零的零次幂的意义。2、使学生掌握(a0,n是正整数)并会运用它进行计算。3、通过探索,让学生体会到从特殊到一般的方法是研究数学的一个重要方法。教学重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些绝对值较小的数。教学难点:理解和应用整数指数幂的性质。教学过程:一、复习并问题导入 ;= ;= ,= 二、探索:科学记数法在2.12中,我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝
6、对值大于10的数表示成a10n的形式,其中n是正整数,1a10.例如,864000可以写成8.64105.类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a10-n的形式,其中n是正整数,1a10.例如,上面例2(2)中的0.000021可以表示成2.110-5.例3 一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.分析在七年级上册第66页的阅读材料中,我们知道:1纳米米.由10-9可知,1纳米10-9米.所以35纳米3510-9米.而3510-9(3.510)10-9 35101(9)3.510-8,所以这个纳米粒子的直径为3.510-
7、8米.第18章函数及其图象18、1变量与函数第一课时 变量与函数教学目标 使学生会发现、提出函数的实例,并能分清实例中的常量和变量、自变量与函数,理解函数的定义,能应用方程思想列出实例中的等量关系。教学过程一、由下列问题导入新课 问题l、右图(一)是某日的气温的变化图 看图回答:1这天的6时、10时和14时的气温分别是多少?任意给出这天中的某一时刻,你能否说出这一时刻的气温是多少吗? 2这一天中,最高气温是多少?最低气温是多少? 3这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低? 从图中我们可以看出,随着时间t(时)的变化,相应的气温T()也随之变化。 问题2 一辆汽车以30千米
8、时的速度行驶,行驶的路程为s千米,行驶的时间为t小时,那么,s与t具有什么关系呢? 问题3 设圆柱的底面直径与高h相等,求圆柱体积V的底面半径R的关系问题4 收音机上的刻度盘的波长和频率分别是用(m)和千赫兹(kHz)为单位标刻的下面是一些对应的数:波长l(m)30050060010001500频率f(kHz)1000600500300200 同学们是否会从表格中找出波长l与频率f的关系呢?二、讲解新课 1常量和变量 在上述两个问题中有几个量?分别指出两个问题中的各个量? 第1个问题中,有两个变量,一个是时间,另一个是温度,温度随着时间的变化而变化 第2个问题中有路程s,时间t和速度v,这三个
9、量中s和t可以取不同的数值是变量,而速度30千米/时,是保持不变的量是常量路程随着时间的变化而变化。 第3个问题中的体积V和R是变量,而是常量,体积随着底面半径的变化而变化 第4个问题中的l与频率f是变量而它们的积等于300000,是常量 常量:在某一变化过程中始终保持不变的量,称为常量 变量:在某一变化过程中可以取不同数值的量叫做变量 2函数的概念 上面的各个问题中,都出现了两个变量,它们相互依赖,密切相关,例如:在上述的第1个问题中,一天内任意选择一个时刻,都有惟一的温度与之对应,t是自变量,T因变量(T是t的函数) 在上述的2个问题中,s30t,给出变量t的一个值,就可以得到变量s惟一值
10、与之对应,t是自变量,s因变量(s是t的函数)。 在上述的第3个问题中,V2R2,给出变量R的一个值,就可以得到变量V惟一值与之对应,R是变量,V因变量(V是R的函数) 在上述的第4个问题中,lf300000,即l,给出一个f的值,就可以得到变量l惟一值与之对应,f是自变量,l因变量(l是f的函数)。函数的概念:如果在个变化过程中;有两个变量,假设X与Y,对于X的每一个值,Y都有惟一的值与它对应,那么就说X是自变量,Y是因变量,此时也称 Y是X的函数 要引导学生在以下几个方面加对于函数概念的理解 变化过程中有两个变量,不研究多个变量;对于X的每一个值,Y都有唯一的值与它对应,如果Y有两个值与它
11、对应,那么Y就不是X的函数。例如y2x 3表示函数的方法 (1)解析法,如问题2、问题3、问题4中的s30t、V=2 R3、l,这些表达式称为函数的关系式, (2)列表法,如问题4中的波长与频率关系表;(3)图象法,如问题l中的气温与时间的曲线图三、例题讲解例1用总长60m的篱笆围成矩形场地,求矩形面积S(m2)与边l(m)之间的关系式,并指出式中的常量与变量,自变量与函数。例2下列关系式中,哪些式中的y是x的函数?为什么?(1)y3x2 (2)y2x (3)y3x2x5四、课堂练习课本第26页练习的第1、2,3题, 五、课堂小结关于函数的定义的理解应注意两个方面,其一是变化过程中有且只有两个
12、变量,其二是对于其中一个变量的每一个值,另一个变量都有惟一的值与它对应对于实际问题,同学们应该能够根据题意写出两个变量的关系,即列出函数关系式。六、作业 课本第28页习题18.1第1、2题。七、教后记第二课时 变量与函数教学目标使学生进一步理解函数的定义,熟练地列出实际问题的函数关系式,理解自变量取值范围的含义,能求函数关系式中自变量的取值范围。教学过程 一、复习1填写如右图(一)所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向加数用y表示,试写出y关于x的函数关系式。2如图(二),请写出等腰三角形的顶角y与底角x之间的函数关系式 3如
13、图(三),等腰直角三角形ABC边长与正方形MNPQ的边长均为l0cm,AC与MN在同一直线上,开始时A点与M点重合,让ABC向右运动,最后A点与N点重合。试写出重叠部分面积y与长度x之间的函数关系式二、求函数自变量的取值范围 1实际问题中的自变量取值范围问题1:在上面的联系中所出现的各个函数中,自变量的取值有限制吗?如果有各是什么样的限制?问题2:某剧场共有30排座位,第l排有18个座位,后面每排比前一排多1个座位,写出每排的座位数与这排的排数的函数关系式,自变量的取值有什么限制。 从右边的分析可以看出,第n排的 排数 座位数 座位 l 18一方面可以用18(n1)表 21813182 示,另
14、一方面可以用m表示,所以 m18(n1) n 18(n1)n的取值怎么限制呢?显然这个n也应该取正整数,所以n取1n30的整数或0n0时,y随x的增大而增大,这时函数的图象从左到右上升; 2当k0?四、课堂练习 P45页练习l、2五、小结:一次函数ykxb有哪些性质?六、作业 P47页习题18.3 8、9(1)七、教后记:第二课时 一次函数的性质(二)教学目标 1使学生理解待定系数法。2.能用待定系数法术一次函数的解析式教学过程一、范例 已知弹簧的长度g(厘米)在一定的限度内是所挂重物质量x(千克)的一次函 数现己测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米求
15、这个一次函数的关系式 分析:已知y与x的函数关系式是一次函数,则关系式必是ykxb的形式所以要求的就是系数k和b的值,而两个已知条件就是x和y的两组对应值,也就是当x6时,y6;当x4时,y7.2可以分别将它们代入函数式,进而求得k和b的值 提问: 1确定一次函数的表达式需要几个条件? 2确定正比例函数的表达式需要几个条件?举例说明。 待定系数法:先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程式方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法。二、做一做 已知一次函数ykxb的图象经过点(1,1)和点(1,5),求当x5时,函数y的值。 提问:1这里的已知条件是否给出了x和y的对应值? 2题意并没有要求写出函数关系式,解题中是否应该求出?该如何人手。 让学生认真思考以上问题并回答。三、课堂练习:P46页练习l、2,阅读P48页内容。四、小结:1什么叫做待定系数法? 2用待定系数法求正比例函数表达式需要几个条件?3用待定系数法确定一次函数表达式需要几个条件?五、作业 :P47页习题183 8、9、10。六、教后记:七、教学后记184 反比例函数1反比例函数教学目标 1经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。2理解反比例函数的概念,会列出
限制150内