同步发电机励磁自动调节系统设计.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《同步发电机励磁自动调节系统设计.doc》由会员分享,可在线阅读,更多相关《同步发电机励磁自动调节系统设计.doc(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流同步发电机励磁自动调节系统设计.精品文档.单片机在同步发电机励磁系统触发电路中的应用系 别 专 业班 级学 号姓 名指导教师负责教师2013年6月摘 要 本文介绍了同步发电机励磁系统,了解了励磁系统是否可靠直接影响发电机的安全运行和电网的稳定,而根据实际情况选择正确的励磁系统是其可靠和稳定的前提。本文主要是对同步电机励磁系统的硬件软件设计,硬件方面主要介绍芯片的选择及其特点以及电路中各个功能模的构造;软件方面通过软件设计流程图、CPU初始化的研究、数字转换的处理、驱动程序等设计。从整体结构、硬件特性、软件编程等方面来综合叙述励磁系统的工作原理
2、,自此完成单片机在同步发电机励磁系统触发电路中的应用的目的。 关键词: 励磁系统;同步电机;单片机;触发电路AbstractThis paper introduces the excitation system of synchronous generator, the excitation system is reliable or not directly affect the safe operation of generator and power system stability, and choose according to the actual situation of the
3、 excitation system is the premise of correct and reliable.This paper is the hardware and software design of the excitation system of synchronous motor, structure design, the hardware of microcomputer excitation regulator through the MSP430 Series MCU programming; software through software design flo
4、w chart, CPU initialization methods, digital conversion processing, drive program design finally to complete the MCU in the synchronous generator excitation system trigger the application purpose of circuitKeywords: Excitation system; synchronous motor; MCU; trigger circuit1 绪论21.1 同步发电机励磁系统介绍21.2 直
5、流励磁机励磁系统31.3半导体励磁系统31.3.1静止式半导体励磁系统41.3.2旋转式半导体励磁系统51.4 研究目的和意义61.5 国内外现状和发展趋势71.5.1 励磁功率系统的发展71.5.2 励磁调节器的发展81.6 本课题研究的内容及技术可行性92 系统硬件设计102.1 微机励磁调节器的硬件结构102.2 MSP430系列单片机简介122.3各部分硬件连接图132.3.1 开关量信号处理电路132.3.2 模拟量信号处理电路162.3.3 输入正弦波转为方波信号处理电路242.3.4 移相触发脉冲输出电路252.3.5 脉冲功率放大电路262.3.6 数码管显示电路273 系统软
6、件设计283.1软件设计流程图283.1.1主程序流程图243.1.2终端服务程序流程图253.2 CPU的初始化253.3 数码管驱动芯片MAX7219的驱动程序273.4 数字转换的处理283.5 测量信号的采集与求取303.5.1 模拟信号的转换算法303.5.2 A/D转换的实现324 全文总结34参考文献35致 谢371 绪论1.1 同步发电机励磁系统介绍向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运
7、行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。1.2 直流励磁机励磁系统 直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。其中直流发电机称为直流励磁机。直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。直流励磁机励磁系统又可分为自励式和它励式。自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因
8、此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。 图1自励直流励磁机励磁系统原理接线图 上图中LH电流互感器YH电压互感器F同步发电机FLQ同步发电机的励磁线圈L直流励磁机LLQ直流励磁机的励磁线圈Rc可调电阻 采用直流励磁机供电的励磁系统,在过去的十几年间,是同步发电机的主要励磁系统。目前大多数中小型同步发电机仍采用这种励磁系统。长期的运行经验证明,这种励磁系统的优点是:具有独立的不受外系统干扰的励磁电源,调节方便,设备投资及运行费用也比较少。缺点是:运行时整流子与电刷之间火花严重,事故多,性能差
9、,运行维护困难,换向器和电刷的维护工作量大且检修励磁机时必须停主机,很不方便。近年来,随着电力生产的发展,同步发电机的容量愈来愈大,要求励磁功率也相应增大,而大容量的直流励磁机无论在换向问题或电机的结构上都受到限制。因此,直流励磁机励磁系统愈来愈不能满足要求。目前,在100MW及以上发电机上很少采用。 1.3半导体励磁系统 半导体励磁系统是把交流电经过硅元件或可控硅整流后,作为供给同步发电机励磁电流的直流电源。半导体励磁系统分为静止式和旋转式两种。 1.3.1静止式半导体励磁系统 静止式半导体励磁系统又分为自励式和它励式两种。 1自励式半导体励磁系统 自励式半导体励磁系统中发电机的励磁电源直接
10、由发电机端电压获得,经过控制整流后,送至发电机转子回路,作为发电机的励磁电流,以维持发电机端电压恒定的励磁系统,是无励磁机的发电机自励系统。最简单的发电机自励系统是直接使用发电机的端电压作励磁电流的电源,由自动励磁调节器控制励磁电流的大小,称为自并励可控硅励磁系统,简称自并励系统。自并励系统中,除去转子本体极其滑环这些属于发电机的部件外,没有因供应励磁电流而采用的机械转动或机械接触类元件,所以又称为全静止式励磁系统。下图为无励磁机发电机自并励系统框图,其中发电机转子励磁电流电源由接于发电机机端的整流变压器ZB提供,经可控硅整流向发电机转子提供励磁电流,可控硅元件SCR由自动励磁调节器控制。系统
11、起励时需要另加一个起励电源。 图2无励磁机发电机自并励系统原理接线图 无励磁机发电机自并励系统的优点是:不需要同轴励磁机,系统简单,运行可靠性高;缩短了机组的长度,减少了基建投资及有利于主机的检修维护;由可控硅元件直接控制转子电压,可以获得较快的励磁电压响应速度;由发电机机端获取励磁能量,与同轴励磁机励磁系统相比,发电机组甩负荷时,机组的过电压也低一些。其缺点是:发电机出口近端短路而故障切除时间较长时,缺乏足够的强行励磁能力对电力系统稳定的影响不如其它励磁方式有利。由于以上特点,使得无励磁机发电机自并励系统在国内外电力系统大型发电机组的励磁系统中受到相当重视。 2它励式半导体励磁系统 它励式半
12、导体励磁系统包括一台交流主励磁机JL和一台交流副励磁机FL,三套整流装置。两台交流励磁机都和同步发电机同轴,主励磁机为100HZ中频三相交流发电机,它的输出电压经过硅整流装置向同步发电机供给励磁电流。副励磁机为500HZ中频三相交流发电机,它的输出一方面经可控硅整流后作为主励磁机的励磁电流,另一方面又经过硅整流装置供给它自己所需要的励磁电流。自动调励的装置也是根据发电机的电压和电流来改变可控硅的控制角,以改变励磁机的励磁电流进行自动调压。 图3它励式半导体励磁系统原理接线图 它励式半导体励磁系统的优点是:系统容量可以做得很大,励磁机是交流发电机没有换向问题而且不受电网运行状态的影响。缺点是:接
13、线复杂,有旋转的主励磁机和副励磁机,启动时还需要另外的直流电源向副励磁机供给励磁电流。这种励磁系统多用于10万千瓦左右的大容量同步发电机。 1.3.2旋转式半导体励磁系统 在它励和自励半导体励磁系统中,发电机的励磁电流全部由可控硅(或二极管)供给,而可控硅(或二极管)是静止的故称为静止励磁。在静止励磁系统中要经过滑环才能向旋转的发电机转子提供励磁电流。滑环是一种转动接触元件。随着发电机容量的快速增大,巨型机组的出现,转子电流大大增加,转子滑环中通过如此大的电流,滑环的数量就要增加很多。为了防止机组运行当中个别滑环过热,每个滑环必须分担同样大小的电流。为了提高励磁系统的可靠性取消滑环这一薄弱环节
14、,使整个励磁系统都无转动接触的元件,就产生了无刷励磁系统,如图4所示。 图4无刷励磁系统原理接线图 副励磁机FL是一个永磁式中频发电机,其永磁部分画在旋转部分的虚线框内。为实现无刷励磁,主励磁机与一般的同步发电机的工作原理基本相同,只是电枢是旋转的。其发出的三相交流电经过二极管整流后,直接送到发电机的转子回路作励磁电源,因为励磁机的电枢与发电机的转子同轴旋转,所以它们之间不需要任何滑环与电刷等转动接触元件,这就实现了无刷励磁。主励磁机的励磁绕组JLLQ是静止的,即主励磁机是一个磁极静止,电枢旋转的同步发电机。静止的励磁机励磁绕组便于自动励磁调节器实现对励磁机输出电流的控制,以维持发电机端电压保
15、持恒定。无刷励磁系统的优点是:取消了滑环和碳刷等转动接触部分。缺点是:在监视与维修上有其不方便之处。由于与转子回路直接连接的元件都是旋转的,因而转子回路的电压电流都不能用普通的直流电压表、直流电流表直接进行监视,转子绕组的绝缘情况也不便监视,二极管与可控硅的运行状况,接线是否开脱,熔丝是否熔断等等都不便监视,因而在运行维护上不太方便。1.4 研究目的和意义 近年来,随着电力系统的发展,大机组的出现,要求励磁调节器具有更高的技术经济指标、更加完善的控制功能。 早期的机电型调节器、电磁型调节器、半导体调节器都越来越不能适应当今同步发电机励磁自动调节系统的发展。目前,由于大规模集成电路和微机技术的迅
16、猛发展,由硬件和软件组成的微机调节器己成为今后的发展方向。优良的励磁调节系统有能提高系统的静稳定储备,防止励磁过分降低,提高继电保护灵敏度,快速灭磁等功能,能较好地使电力系统在稳定状态下运行并有较强的抗干扰能力。本系统采用MSP4300F149单片机为主控芯片,设计的微机励磁调节器将会作为励磁自动调节系统发展的一个新的方向。1.5 国内外现状和发展趋势1.5.1 励磁功率系统的发展50年代初期,汽轮发电机的励磁主要是采用直流励磁机系统。直流励磁机的容量受机械强度和换向电压等电气参数的影响,其最大功率取决于 nP=1.8 X 106 (1-1)式中 P直流励磁机的最大功率,kW; n直流励磁机的
17、转速,r/min。由于直流励磁机与汽轮发电机同轴旋转,即n=3000 r/min,则励磁机的最大功率P为600kW。对于励磁功率大于600kW的汽轮发电机,无法采用同步直流励磁机系统。后来,交流励磁系统逐渐发展起来。在交流励磁系统的发展过程中,先后出现了他励交流励磁机系统,自励和自复励静止励磁系统。 图1-1他励旋转硅整流励磁系统图1-1所示为交流励磁机系统,其励磁功率电源可靠,不受电力系统或发电机端短路故障的影响,即励磁功率电源取自发电机以外的独立的并与其同轴旋转的交流励磁机,故称为他励。他励交流励磁机系统比起直流机励磁系统,容量增大了,能提供较大功率。在直流励磁系统之后很长一段时间内,他励
18、交流励磁机系统占有很重要的地位。由于他励交流励磁机系统仍有转动部分,维护不方便,且与发电机同轴,增大了发电机和厂房体积,使投资大大增加,不利于今后的发展,于是自励和自复励静止励磁系统便发展起来。 图1-2自励可控硅静止励磁系统图1-2中所示的自励可控硅励静止励磁系统,其励磁功率电源采用发电机静止变压器作为电压源,或采用发电机系统静止的变流器作为电流源。由电压源或电流源构成的励磁系统,统称为自励静止励磁系统;由电压源和电流源复合构成的励磁系统,称为自复励静止励磁系统。自复励静止励磁系统的优点是:具有相复励作用,减轻了调节器的负担,增加了快速性;取消了励磁机,加快了调节速度,对提高电力系统稳定性有
19、利;整个系统没有旋转设备,维护简单。1.5.2 励磁调节器的发展励磁调节器是励磁控制系统的智能部件,它是根据发电机端电压和电流的变化对机组励磁产生校正作用的装置,用来在正常情况和故障情况下励磁的自动调节。早期的调节器为振动型和变阻器型,都具有机械部件,称为机电型调节器。由于它不能连续调节,响应速度慢,并有死区,早己被淘汰。上世纪50年代以来,磁放大器出现后,电力系统广泛采用磁放大器和电磁元件组成的电磁型调节器。由于磁放大器具有时滞性,调节速度慢,但可靠性高,通常用于直流励磁机系统。上世纪60年代初期,随着半导体技术的发展,电力系统开始采用由半导体元件组成的半导体调节器。由于半导体元件几乎没有时
20、滞,功率放大倍数也较高,因此半导体调节器调节速度较快。近年来,随着电力系统的发展,大机组的出现,要求调节器具有更高的技术经济指标、更完善的控制功能。目前,由于大规模集成电路和微机技术的迅猛发展,由硬件和软件组成的微机调节器己成为今后的发展方向。1.6 本课题研究的内容及技术可行性励磁调节系统的主要任务可归为:(1)保持发电机在运行中电压恒定;(2)在并列运行中,调节无功功率的分配;(3)提高同步发电机并列运行的稳定性。当发电机运行时,保持端电压恒定是励磁调节中最基本的动作,影响电压变化的干扰主要来自三个方面,即:1.负荷的变化;2.转速的变化;3.发电机励磁系统的温度变化。在发电机正常运行时,
21、励磁系统应维持发电机端电压在给定水平。为保证发电机端电压恒定,必须随发电机负荷电流的大小相应调整发电机励磁电流。另外,在电力系统暂态过程中,维持发电机的端电压恒定有利于维持电力系统的电压水平,使电力系统的运行特性得到改善。当电力系统发生甩负荷、短路切除、重负荷线路合闸等现象时,可能造成电压升高加快或大量无功缺额等现象,自动励磁调节能减小这种现象,使电力系统的运行特性得到改善。因此励磁调节系统应具备强行励磁、强行减励等功能。本文将通过设计制作来揭示本励磁调节器的强大功能及准确、快速的控制特性。在以后章节中主要通过两个个方面来介绍:1、硬件设计:主要介绍芯片的选择及其特点以及电路中各个功能模的构造
22、;2、系统实现:从整体结构、硬件特性、软件编程等各个方面来综合叙述本装置是如何进行工作的。由于现代电力系统对稳定性、可靠性的要求越来越高,对励磁调节器性能的要求也相应的提高了。因此在设计励磁调节器时应注意到以下几点:1)励磁调节器应具有高度的可靠性及稳定性。2)励磁调节器应具有良好的静态特性和动态特性。3)励磁调节器的时间常数应尽可能小,响应速度快。4)励磁调节器应结构简单、检修方便,并应尽量做到系列化、标准化、通用化。微型计算机以及体积小、功能强、运算速度快、可靠性高而逐渐受到人们的重视。但现有的51及%系列的单片机由于功能较少,使用起来不方便。本文是以一种新型16位单片机-MSP43014
23、9为基础,研究开发其外围电子电路,制作一种新型的微机励磁调节系统。它具有体积小、结构简单、功能强大、可靠性高、能方便地实现Pm算法等优点,应用在发电机励磁调节器上能取得较好的效果。可以预见,在今后很长一段时间内,以MSP单片机为基础的发电机微机励磁调节系统将得到更完善的发展。2 系统硬件设计2.1 微机励磁调节器的硬件结构发电机微机励磁系统主要由励磁变压器、微机励磁调节装置、可控硅整流桥、转子过压保护与灭磁装置等构成。图2-1为发电机微机励磁系统整体结构示意图。 图2-1发电机微机励磁系统整体结构励磁变压器(ZB)是为发电机励磁系统提供能源的装置。根据电站的实际情况,它的一次侧电源可取自电站厂
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同步 发电机 自动 调节 系统 设计
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内