基于海量数据的数据分析方案设计.doc





《基于海量数据的数据分析方案设计.doc》由会员分享,可在线阅读,更多相关《基于海量数据的数据分析方案设计.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流基于海量数据的数据分析方案设计.精品文档. 基于海量数据的数据分析方案设计data analysis program design based on mass data 摘要:随着互联网,移动互联网和物联网的发展,谁也无法否认,我们来到了一个海量数据的时代。随着数据积累的越来越多,现在许多行业大多面临基于海量数据的分析问题,该文从基于海量数据挖掘的分析方法出发,利用河南省2005到2009年交通事故的数据,设计了一个数据分析方案。关键词:海量数据,数据挖掘,回归模型,方案Abstract: with the development of In
2、ternet, mobile Internet and development of Internet of things, nobody can deny that we come to a massive data era. As data accumulate more and more, many industries are facing problems based on large amounts of data analysis . This paper ibased on the analysis of mass data mining method of Henan pro
3、vince from 2005 to 2009, using the data of traffic accidents, designes a data analysis program.Key words: mass data, data mining, regression model, scheme一、引言随着信息技术的发展,人们积累的数据越来越多。事实上,数据本身是没有意义的,只有用以进行分析处理才真正起到作用。因此,可以说激增的数据背后更重要的是隐含的信息,人们希望能够对这些数据进行更高层次的分析,以便更好地利用这些数据。 海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数
4、据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。 在实际的工作环境下,许多人会遇到海量数据这个复杂而艰巨的问题,它的主要难点有以下几个方面:数据量过大,数据中什么情况都可能存在;软硬件要求高,系统资源占用过高;要求很高的处理方法和技巧。基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提高了处理效率和处理的成功率。 数据挖掘是指从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取出隐含在其中的、可
5、信、新颖、人们事先不知道的、但又是潜在有用的模式的高级处理过程。数据挖掘是由统计学、人工智能、数据库、可视化技术等多个领域相融合而形成的一个交叉学科。除了进行关系和规则的描述之外,数据挖掘的一个很重要的任务是分析。根据在过去和现在的数据中寻找到的规律建模,这样的模式有时候也可以认为是以时间为关键属性的关联知识。一个数据挖掘系统可以自动在大型数据库中寻找预测性信息,以往需要进行大量手工分析的问题如今可以迅速直接由数据本身得出结论。一个典型的例子是数据挖掘在交通事故中的应用,交通事故数据挖掘应用分析的主要作用有:可以分析出影响交通安全的诸因素及其影响的轻重程度,预测交通事故的发展趋势;发现和识别事
6、故高发区域、交叉口和路段;可以分析交通事故成因、特征、规律及交通安全工作中的薄弱环节,明确交通安全管理工作的重点和对策等。一般情况下,分析的基本数据是时间序列数据,也就是按照时间先后存放在数据库中的数据。时间序列预测法可用于短期、中期和长期预测。根据对资料分析方法的不同,又可分为:简单序时平均数法、加权序时平均数法、移动平均法、加权移动平均法、趋势预测法、指数平滑法、季节性趋势预测法、市场寿命周期预测法等。由于大量的时间序列是非平稳的,其特征参数和数据分布随着时间的推移而发生变化,因此,仅仅通过对某段历史数据的训练,建立单一的神经网络模型,还无法完成准确的建模任务。为此,人们提出了基于统计学和
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 海量 数据 分析 方案设计

限制150内