在数学教学中培养学生的创新思维能力.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《在数学教学中培养学生的创新思维能力.doc》由会员分享,可在线阅读,更多相关《在数学教学中培养学生的创新思维能力.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流在数学教学中培养学生的创新思维能力.精品文档.在数学教学中培养学生的创新思维能力 随着科学技术的发展和人类社会的进步,知识经济的时代已经来临,知识经济对创新能力提出了更高的要求。高中数学课程标准中明确提出“高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用”,“高中数学课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的过程,发展他们的创新意识”。这就要求我们从课堂教学改革入手,探索进行创新教育的有效途
2、径。下面谈谈在数学教学活动中培养学生创新思维能力的一些做法和体会:一、设计知识的再创造过程,让学生体验发现与创造教材中的概念、公式、定理是学生学习的重要内容,对学生而言都是新的,但教师不必将各种规则、定律硬灌输给学生,而是应该引导学生运用已有的经验、知识、方法去探索和发现,从而获得新知,这对学生而言是一个知识的再创造的过程。在讲诱导公式sin(180+ )=-sin 时,湖南省冷水市涟邵二中刘利民老师没有根据教材顺序进行讲解,而是设计了如下步骤:()用三角函数定义求sin60、sin240(教师强调在同一坐标系中求,为证明作铺垫);()由学生谈感想并进行猜想。大部分学生得出两种想法: sin2
3、40=-sin60、sin(180+ )=-sin ( 为锐角)。再经过思考,有学生进一步猜想:sin(180+ )=-sinR;()引导学生验证。教师设问提示:如何在同一坐标系中求sin 、sin(180+ )呢?学生都在 终边上取一点p(x , y),设op=r,并顺利找到180+ 的终边即 终边的反向延长线。接着,有的学生在180+ 的终边上任取一点p,借助相似三角形性质验证;有的学生在180+ 的终边上任取一点p,并使o p=r,利用对称性验证。教师对学生的猜想和证明肯定后,要他们看教材进行比较,并展开讨论,有的说:“单位圆是画蛇添足”,有的说:“单位圆更简单”。学生在对知识的探索和争
4、论中,获得对发现和创造的体验。二、创设情境,增强学生的创新意识1、诱发好奇心理,培养学生的探索精神教学中充分激发和利用学生的好奇心有利于提高课堂教学效果,而这样的过程又能使学生的好奇心理得到进一步强化。如用现代教学手段增强新奇感(运用多媒体演示太空星球运动、运用几何画板演示动点轨迹),运用生活中的现象增强趣味性(用打桥牌时对牌的分布的可能性引入概率、用几只弹簧称演示向量的合成与分解),运用数学史料激发求知欲(用数学史上的三次危机引入无理数、用国际象棋发明者与印度国王的故事引入等比数列)。在学生的好奇心被充分调动后,利用学生的好奇心和求知欲,给学生提供探索和发现的机会,鼓励学生透过现象看本质,激
5、发追根求源的探索精神。如讲正弦定理时,不按照先推导公式再研究其应用的传统模式进行,而是先给几个具体问题让学生研究。例如,已知a=3,b=4,B=60,求A;已知a=3,A=30,B=120,求b等等。学生分别用构造直角三角形的方法解决了这些问题后,自然产生这样的感觉:能否建立一个模式来统一解决呢?这样既激发了学生的探索热情,又使正弦定理的引入变得水到渠成。再如,讲点到直线的距离公式时,学生自然地想到过P(x0,y0)作直线L:Ax+By+C=0的垂线,先求垂足Q的坐标,再求PQ。我没有因其较繁而打断学生的思路,而是让他们继续操作并加以解决。学生解决后自己也感到挺繁的,意识到应该寻找更简捷的解决
6、方法,探索性思维又一次展开了。教师适时给予指导:若点P在y轴上是否可以来得简单一点?受此启发,学生经过一番研究,多种崭新的方案出台了。2、培养化归意识,鼓励大胆猜想归纳法是通过一些个别的、特殊的情况加以观察、分析,从而得出一般结论的推理方法。以某些已知的事实和一定的经验为依据,对数学问题作出推测性的判断即猜想。化归意识的培养,不仅有助于实际问题的解决,而且有助于养成自觉地联想、自觉地调整思维方式的钻研精神和思考习惯。数学上的许多创造都是以猜想为前提的,著名的哥德巴赫猜想“任何一个大于的偶数都可以表示成两个素数之和”就是一个典型的例子。在讲组合数的性质时,我先让学生计算考察下列组合数:C 与C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 教学 培养 学生 创新 思维能力
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内