地质矿产勘查作业指导.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《地质矿产勘查作业指导.doc》由会员分享,可在线阅读,更多相关《地质矿产勘查作业指导.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流地质矿产勘查作业指导.精品文档.地质矿产勘查作业指导讲义二十多年的地质矿产勘查工作,干得有点累了,也积累了一些经验,现突然想总结发布,希望对大家有所帮助,因为是给单位年轻学员上课用的,故暂定名为“地质勘查工作作业指导讲义”,侧重地质勘查工作实际操作,以满足勘查工作生产需要为目的,不当之处请广大同仁批评指正。 1 地质工作中常用的坐标系 坐标是表达地面位置的重要参数,从事地质勘查工作的人时时刻刻都在与坐标打交道,一切地质工作都建立在坐标定位之上,是地质工作的基础。地 球是一个球体,球面上的位置,是以经纬度来表示,我们把它称为“球面坐标系统”或“
2、地理坐标系统”。在球面上计算角度距离十分麻烦,而且地图是印刷在平面 纸张上,要将球面上的物体画到纸上,就必须展平,这种将球面转化为平面的过程,称为“投影”。经由投影的过程,把球面坐标换算为平面直角坐标。 1.1 地理坐标系统 地质工作常用的地理坐标系统有北京 54 坐标系、西安 80 坐标系、美国 WGS84 坐标,目前在全国第二次土地调查中使用的 2000 国家大地坐标系,在地勘行业中不常用。一个完整的坐标系统是由坐标系和基准 2 个方面要素所构成的。下面主要介绍 WGS-84 大地坐标系、 1954 年北京坐标系和 1980 年国家大地坐标系、 2000 国家大地坐标系 4 种坐标系统及其
3、参考椭球的基本常数 ( 基准 ) 及手持 GPS 接收机 WGS-84 、 1954 年北京坐标系和 1980 年国家大地坐标系转换参数计算。一、 WGS-84 大地坐标系 WGS 84 ( World Geodetic System , 1984 年)是美国国防部研制确定的大地坐标系,其坐标系的几何定义是:原点在地球质心, z 轴指向 BIHl984.0 定义的协议地球极 (CTP) 方向, x 轴指向 BIHl984.0 的零子午面和 CTP 赤道的交点, Y 轴与 x 轴和 z 轴构成右手坐标系。该椭球的参数为:长半轴: a=6378137m ;第一偏心率: e2=0.006694379
4、99013 ;第二偏心率: e ” =0.006739496742227 ;扁率: F=1/298.25223563 。二、 1954 年北京坐标系 (BJ 一 54) 建国前,我国没有统一的大地坐标系统,建国初期,在苏联专家的建议下,我国根据当时的具体情况,建立起了全国统一的 1954 年北京坐标系。该坐标系以格拉索夫斯基椭球为基础,经局部平差后产生的坐标系,与苏联 1942 年建立的以普尔科夫天文台为原点的大地坐标系统相联系,相应的椭球为克拉索夫斯基椭球,该椭球的参数为:长半轴: a=6378245 m ;第一偏心率: e2=0.00669342162297 :第二偏心率: e ” =0.
5、00673852541468 :扁率: F=1/298.2 。高程采用 1956 黄海高程,系以青岛验潮站 1950 1956 年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。该原点以“ 1956 年黄海高程系”计算的高程为 72 289 米。该坐标系统的大地点坐标是经过局部分区平差得到的,因此存在着一定的缺陷。三、 1980 年国家大地坐标系 (C 一 80) 1978 年,我国决定重新对全国天文大地网施行整体平差,并且建立新的国家大地坐标系统,其大地原点在我国中部,具体地点是陕西省径阳县永乐镇。该坐标系是参心坐标系,椭球的短轴 z 轴平行于地球的自转轴 ( 由地球质心指向 1
6、968.0JYD 地极原点方向 ) ,起始子午面平行于格林尼治平均天文子午面, x 轴在大地起始子午面内与 z 轴垂直指向经度零方向; Y 轴与 z 、 x 轴成右手坐标系。该坐标系统所采用的地球椭球参数的 4 个几何和物理参数采用了 IAGl975 年的推荐值,其椭球的参数为:长半轴: a=6378140 m ;第一偏心率: e2=0.006694384999588 :第二偏心率: e ” =0.006739501819473 :扁率: F=1 298.257223563 。高程采用 1985 国家高程基准。由于 1956 黄海高程系计算基面所依据的青岛验潮站的资料系列观测时间较短等原因(
7、1950 年 1956 年),中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站 1952 年 1979 年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共和国水准原点,得出 1985 年国家高程基准高程和 1956 年黄海高程的关系为:1985 年国家高程基准高程 =1956 年黄海高程 -0.029m 。1985 年国家高程基准已于 1987 年 5 月开始启用, 1956 年黄海高程系同时废止。四、 2000 国家大地坐标系 国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的 4 个基本参数的定义。 2000 国家大地坐标系的原点为包括海洋和
8、大气的整个地球的质量中心; 2000 国家大地坐标系的 Z 轴由原点指向历元 2000.0 的地球参考极的方向,该历元的指向由国际时间局给定的历元为 1984.0 的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转, X 轴由原点指向格林尼治参考子午线与地球赤道面(历元 2000.0 )的交点, Y 轴与 Z 轴、 X 轴构成右手正交坐标系。采用广义相对论意义下的尺度。 2000 国家大地坐标系采用的地球椭球参数的数值为:长半轴: a 6378137m 第一偏心率: e2=0.00669438002290 第二偏心率: e ” =0.00673949677548 扁率: f=1/
9、298.257222101 高程仍采用无潮汐系统。该坐标系目前尚未在地质勘查工作中使用。 1.2 平面直角坐标系统 平面直角坐标系是由地理坐标系统投影而得的,目前国际间普遍采用的一种投影,是横轴墨卡托投影( Transverse Mecator Projection ),又称为高斯 - 克吕格投影( Gauss-Kruger Projection ),是地球通过外切 “ 中央经线 ” 橫躺的圆柱体进行投影,在中央经线上,投影面与地球完全密合,因此图形没有变形;由中央经线往東西两侧延伸,地表图形会被逐渐放大,变形也会越来越严重 ( 图 1-1) 。为了保持投影精度在可接受范围内,每次只能取中央经
10、线两侧附近地区来投影,因此必须切割为许多投影带,将地球沿南北子午线方向,如切西瓜一般,以 6 度或 3 度分带切割为若干带状,再展成平面,每一个分带构成一个独立的平面直角坐标网,投影带中央经线投影后的直线为 X 轴(纵轴,纬度方向),赤道投影后为 Y 轴(横轴,经度方向),为了防止经度方向的坐标出现负值,规定每带的中央经线西移 500 公里,即东伪偏移值为 500 公里,由于高斯 - 克吕格投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,因此规定在横轴坐标前加上带号,如 (5003560,14519660) 其中 14 即为带号,同样所定义的东伪偏移值也需要加上带号,
11、如 14 带的东伪偏移值为 14500000 米。图1-1 坐标系统横轴投影示意图在地质勘查工作中,六度带多用于中小比例尺( 1:250001:10000 )测图,带号计算公式为 n=L/6( 取整 )+1 ( n- 带号, L- 经度坐标),中央子午线为 6n-3 ;三度带多用于大比例尺( 1:10000 以下)测图,带号计算公式为 n=L/3( 取整 )+1 ,中央子午线为 3n 。目前世界各国军用地图所采用的 UTM 坐标系统 (Universal Transverse Mecator Projection System) ,也是横轴投影 6 度带的一种,将全球共分为 60 个投影带。
12、1.3 手持 GPS 接收机、罗盘的调校 在地质勘查工作中通常用到手持 GPS 接收机及罗盘等定位工具,工作区域不同,其参数也不同,使用之前是要进行调校的。一、手持 GPS 接收机坐标系统校正 由于现在我国民用卫星定位系统尚未健全,地勘工作中使用的手持 GPS 接收机均使用的是美国卫星信号,用的美国 WS-84 坐标系,其与我国应用的坐标系统之间存在着约 80 100 米的误差,因而使用前必须用参数将坐标转换为 BJ-54 或 C-80 坐标系,转换后的绝对定位精度可提高到 5 10 米,可以满足中小比例尺(小于 1:10000 )地质测图用。1 、位置格式设定选择“ User UTM Gri
13、d ”格式,调整六度带中央子午线,投影比例选 1 ,东西偏差为 500000 ,南北偏差为 0 。2 、地图基准设定选择“ User ”模式输入 DX 、 DY 、 DZ 、 DA 、 DF 参数。其中 DA=-108 , DF=0.0000005 , DX 、 DY 、 DZ 的确定:1 )在手持式 GPS 接收机应用的区域内 ( 该区域不宜过大,一般应小于 50 平方千米 ) ,从当地测绘部门收集该区较均匀分布 3 5 个 GPS “ B ”级网以上已知点的北京 BJ-54 或西安 c-80 坐标系统的坐标值( B 北纬、 L 东经、 h 高程、 x 高程异常),然后在对应的点位上读取 W
14、GS 一 84 坐标系的坐标值( B 北纬、 L 东经、 H 高程)。2 )将收集到的坐标值根据不同的坐标系转换为空间坐标系的坐标值,计算公式如下:X (N+H)cosBcosLY=(N+H)cosBsinLZ=N(1-e2) +H sinB* 注: X 、 Y 、 Z 为大地坐标系中的三维直角坐标; N 为该点的卯酉圈曲率半径, N a/(1-e2 sin2B)1/2 , H=h+x 。3 )利用 WGS84 坐标系的 X 、 Y 、 Z 值及 a 、 F 值减去我国坐标系对应值,得出 DX 、 DY 、 DZ 、 da 、 DF 五个参数,平均后做 GPS 调整参数。4 )参数计算之后必须
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 地质矿产 勘查 作业 指导
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内