基于FPGA的多功能计数器的设计.doc
《基于FPGA的多功能计数器的设计.doc》由会员分享,可在线阅读,更多相关《基于FPGA的多功能计数器的设计.doc(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流基于FPGA的多功能计数器的设计.精品文档.本科毕业论文(设计)题 目: 基于FPGA的多功能计数器的设计 学 院: 自动化工程学院 专 业: 电子信息科学与技术 姓 名: # 指导教师: # 2010年 6 月 8 日 基于FPGA的多功能计数器的设计The Design of Multi-function Counter Based on FPGA摘 要本文介绍了一种以大规模可编程逻辑芯片为设计载体,由顶层到底层设计的多功能数字频率计。该频率计采用单片机与频率测量技术相结合,大大提高了测量的精度。本文主要包括该频率计的设计基础和实现方法两
2、部分内容, 描述了它的设计平台、工作原理和软硬件实现。在硬件上,利用Altera公司的FPGA器件为主控器;在软件上,采用VHDL硬件描述语言编程,极大地减少了硬件资源的占用。该数字频率计具有频率测量、周期测量、脉宽测量和占空比测量等多种功能。仿真与分析结果表明,该数字频率计性能优异,软件设计语言灵活,硬件简单,速度快。关键词 FPGA 等精度 频率计 VHDLAbstractThis article introduced one kind as designs the carrier take the large-scale programmable logic chip, the mult
3、i-purpose digital frequency meters which designs from the top layer to the first floor. This frequency meter uses the monolithic integrated circuit and the frequency measurement technology unifies, increased the survey precision greatly. This article mainly includes this frequency meters design basi
4、s and realizes the method two partial contents, described its design platform, the principle of work and the software and hardware realizes. On the hardware, uses Altera Corporations FPGA component is the master controller; On the software, uses the VHDL hardware description language programming, re
5、duced hardware source occupancy enormously. This digital frequency meter has the frequency measurement, the cyclical survey, the pulse width survey and the dutyfactor survey and so on many kinds of functions. The simulation and the analysis result indicated that this digital frequency meter performa
6、nce is outstanding, the software design language is flexible, the hardware is simple, the speed is quick.Keywords FPGA Equal Precision Measurement Frequency meter VHDL目 录第一章 概述11.1 多功能计数器现状11.2 频率测量方法简介2第二章 软件开发平台VHDL简介32.1 VHDL的发展32.2 VHDL的特点32.3 VHDL语言结构42.3.1 实体(ENTITY)42.3.2 结构体(ARCHITECTURE)52.
7、4 VHDL软件设计简介6第三章 硬件开发平台现场可编程门阵列(FPGA)简介73.1 可编程逻辑器件73.2 现场可编程门阵列(FPGA)73.2.1 FPGA的器件结构与工作原理83.2.2 基于EDA平台的FPGA开发流程10第四章 多功能计数器的理论基础和总体设计方案134.1 常用频率测量方法及其误差分析134.1.1 直接测频法134.1.2 测周法原理154.1.3 等精度测频原理154.2 脉冲宽度和占空比测量原理174.3 总体设计18第五章 多功能计数器的软件设计和硬件设计205.1 软件设计205.1.1 测频专用模块工作功能描述及VHDL程序215.1.2 脉冲宽度和占
8、空比测量模块235.1.3 GATE265.1.4 测频/测周期实现265.2 硬件设计275.2.1 程控放大电路285.2.2 过零比较电路285.2.3 测频主系统实现29总 结31谢 辞32参考文献33第一章 概述在信息技术高速发展的今天,电子系统数字化已成为有目共睹的趋势。从传统的应用中小规模芯片构成电路系统到广泛地应用单片机,直至今天FPGA/CPLD在系统设计中的应用,电子设计技术已迈入了一个全新的阶段。FPGA/CPLD不仅具有容量大、逻辑功能强的特点,而且兼有高速、高可靠性。同时使得硬件的设计可以如软件设计一样方便快捷,使电子设计的技术操作和系统构成在整体上发生了质的飞跃。随
9、着FPGA/CPLD器件的日益成熟和应用,在通信、国防、工业自动化、仪器仪表等领域的数字电子系统设计工作中,它们正在成为电子设计的主要角色。基于强大的EDA技术的支持,以VHDL为主要设计手段,充分开发利用CPLD芯片丰富而灵活的逻辑资源,成为当前数字系统设计的主要发展方向。1.1 多功能计数器现状多功能计数器是一种用十进制数字显示被测信号频率、周期、占空比的数字测量仪器,是在数字电路中的一个典型应用;实际的硬件设计的多功能计数器用到的器件较多,连线比较复杂,而且会产生比较大的延时,造成测量误差、可靠性差。随着复杂可编程逻辑器件(CPLD)的广泛应用,以EDA工具作为开发手段,运用VHDL语言
10、,将使整个系统大大简化,提高整体的性能和可靠性。它是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。当今VLSI的发展日新月异,FPGA的容量和速度成倍地增长,而价格却逐年下降,这将使得基于FPGA设计的多功能计数器优势更加明显。采用VHDL编程设计实现的多功能计数器,除被测信号的整形部分、键输入部分和数码显示部分以外,其余全部在一片FPGA芯片上实现,具有体积小、可靠性高、功耗低的特点;整个系统非常精简,且具有灵活的现场可更改性。通过改装,可以测量脉冲宽度,做成数字脉宽测量仪;可以测量电容做成数字电容测量仪;在电路中增加传感器,还可以做成数字脉搏仪、计价器等。因此多功能计数器在测
11、量物理量方面及航天、电子、测控、仪器仪表、通信等领域应用广泛。近年来,高精度频率测量仪器广泛应用在晶体或晶体振荡器等需求量大和要求高精度的行业、越来越多的电子产品要求具备高性能和低功耗的特点,通常一块印刷电路板会布置多个晶体或晶体振荡器、一般精度的频率测量仪不能满足对其测量要求,而满足测量要求的仪器又都是作为频率计量基准,应用于国家科研院所。这此仪器设计复杂、体积庞大、价格昂贵,很难在短期内推广。因此,设计一款测量精度高、成木较低的频率测量仪显得十分必要。 这里介绍的计数器设计精良,操作简便,精确度高,测量范围广, LCD荧幕全功能显示,兼具备测频、测周期功能,且成本较低.并具有良好的市场前景
12、及经济效益。1.2 频率测量方法简介根据测频工作原理可将频率测量方法分成以下几类:1) 是利用电路的某种频率响应特性来测量频率,谐振测频法和电桥测频法是这类 测量方法的典型代表:前者常用于低频段的测量,后者主要用于高频或微波频段的测量。谐振法的优点是体积小、重要轻、不要求电源等,目前仍获得广泛应用。2) 是利用标准频率与被测频率进行比较来测量频率,采用比较法测量频率,其准确度取决于标准频率的准确度。拍频法、示波器法以及差频法等均属此类方法。拍频法和示波器法主要用于低频段的测量,差频法则用于高频段的频率测量,它的显著优点是测试灵敏度高1。以上两种方法适合于模拟电路中实现,但是模拟电路没有数字电路
13、稳定,因此数字电路出现后,马上就出现了数字频率计。目前广泛使用的计数测频法则适合于数字电路实现。该方法是根据频率的定义,记下单位时间内周期信号的重复次数,因此又称为电子计数器测频法。常用数字频率测量方法有M法,T法和法。M法是在给定的闸门时间内,测量被测信号的脉冲个数再进行换算得出被测信号的频率,其测量精度取决于闸门时间的准确度和被测信号频率。当被测信号频率较低时将产生较大误差,除非闸门时间取得很大。T法是通过测量被测信号的周期,然后换算得出被测信号的频率。其测量精度取决于被测信号的周期和计时精度,测信号频率较高时,对计时精度的要求就很高。法具有以上2种方法的优点,它通过测量被测信号数个周期的
14、时间,然后换算得出被测信号的频率,可兼顾低频与高频信号,提高了测量精度。但是,M法,T法和法都存在计数误差问题。M法在规定闸门时间内存在个被测信号的脉冲计数误差,T法或法也存在个字的计时误差。这个问题成为限制测量精度提高的一个重要原因。本设计在研究总结上述方法的基础上,得出了一种新的频率测量方法,该方法利用等精度测频方法消除限制测量精度提高的个数字误差问题,从而使频率测量的精度和性能大为改善。然而一种新的方法的实际应用比提出来更难,要考虑各种可能的问题,首先就是由于采用的新的设计方法使得电路的复杂程度成倍增加,因此如果还采用传统数字电路来实现则将使PCB板面积变得异常庞大与复杂。信号走线长,导
15、致系统误差增大,难以提高系统的工作频率,此外,PCB板的集成度不高还将导致高频信号容易受到外界的干扰,反而可能降低测频精度。由于可编程逻辑器件能很好地克服了以上缺点,大大提高系统时钟,因此本设计将介绍由现场可编程门阵列(FPGA) 来实现等精度频率计。第二章 软件开发平台VHDL简介2.1 VHDL的发展VHDL诞生于1982年。在1987年底,VHDL被IEEE和美国国防部确认为标准硬件描述语言 。自IEEE公布了VHDL的标准版本,IEEE-1076(简称87版)之后,各EDA公司相继推出了自己的VHDL设计环境,或宣布自己的设计工具可以和VHDL接口。此后VHDL在电子设计领域得到了广泛
16、的接受,并逐步取代了原有的非标准的硬件描述语言。而Verilog HDL是由GDA(Gateway Design Automation)公司的PhilMoorby在1983年末首创的,最初只设计了一个仿真与验证工具,之后又陆续开发了相关的故障模拟与时序分析工具。1985年Moorby推出它的第三个商用仿真器Verilog XL,获得了巨大的成功,从而使得Verilog HDL迅速得到推广应用。1989年CADENCE公司收购了GDA公司,使得Verilog HDL成为了该公司的独家专利。1990年CADENCE公司公开发表了Verilog HDL,并成立LVI组织以促进Verilog HDL成
17、为IEEE标准,即IEEE Standard 1364-1995。 2.2 VHDL的特点VHDL语言主要用于描述数字系统的结构、行为、功能和接口,与其他硬件描述语言相比,VHDL语言有如下优越之处2:1) VHDL语言支持自上而下(Top Down)和基于库(Library Base )的设计方法,还支持同步电路、异步电路、FPGA以及其他随机电路的设计;2) VHDL语言具有多层次描述系统硬件功能的能力,可以从系统的数学模型直到门级电路,其高层次的行为描述可以与低层次的RTL描述和结构描述混合使用,还可以自定义数据 类型,给编程人员带来较大的自由和方便;3) VHDL对设计的描述具有相对独
18、立性,设计者可以不懂硬件的结构,也不必关心最终设计实现的目标器件是什么;4) VHDL具有电路仿真与验证功能,可以保证设计的正确性,用户甚至不必编写如何测试相量便可以进行源代码级的调试,而且设计者可以非常方便地比较各种方案之间的可行性及其优劣,不需做任何实际的电路实验;5) VHDL语言可以与工艺无关编程;6) VHDL语言标准、规范,易于共享和复用。2.3 VHDL语言结构 图2.1 VHDL程序结构框图3图2.1中是VHDL的全部结构,但实际上并不需要全部的结构,就像在许多设计项目中,大部分工程师只用到VHDL其中的30%的语法;通常图2.2的结构才是基本和必需的。图2.2 VHDL程序基
19、本结构2.3.1 实体(ENTITY)实体作为一个设计实体的组成部分,其功能是对这个设计实体与外部电路进行接口描述,它是设计实体的表层设计单元;实体说明部分规定了设计单元的输入输出接口信号或引脚,它是设计实体对外一个通信界面。就一个设计实体面言,外界所看到的仅仅是它的界面上的各种接口。它可以拥有一个或多个结构体,用于描述此设计实体的逻辑结构和逻辑功能,对于外界来主,这一部分是不可见的。不同逻辑功能的实体可以拥有相同的实体描述,这是因为实体类似于原理图中的一个部件符号,而其的逻辑功能是由设计实体中结构体的描述确定的。实体是VHDL的基本设计单元,它可以对一个门电路、一个芯片、一块电路板乃至整个系
20、统进行接口描述。其结构:ENTITY 实体名 IS4 GENERIC(常数名:数据类型:设定值 ;常数名:数据类型:设定值 ); PORT(端口名:端口模式 数据类型;端口名:端口模式 数据类型);END ENTITY 实体名;2.3.2 结构体(ARCHITECTURE)结构体是实体所定义的设计实体中的一个组成部分。结构体描述设计实体的内部结构和实体端口间的逻辑关系。结构体由两大部分组成5:对数据类型、常数、信号、子程序和元件等元素的说明部分;描述实体逻辑行为的,以各种不同的描述风格表达的功能描述语句,它们包括各种形式的顺序描述语句和并行描述语句。其语句格式如下:ARCHITECTURE 结
21、构体名; 说明语句BEGIN 功能描述语句END ARCHITECTURE 结构体名;图2.3中的五种语句结构的基本组成和功能分别是:块语句是由一个系列并行执行语句构成的组成体,它的功能是将结构中的并行语句组成一个或多个模块。进程语句定义顺序语句模块,用以将从外部获得的信号值,或内部的运算数据向其它的信号进行赋值。信号赋值语句将设计实体内的处理结果向定义的信号或界面端口进行赋值。子程序调用语句用以调用过程或者函数,并将此元件的端口与其它的元件、信号或高层次实体的界面端口进行连接。图2.3 结构体构造图2.4 VHDL软件设计简介系统电路的软件设计可采用工具软件MAX+PLUS,用该工具软件所支
22、持的语言硬件描述语言VHDL,以文本的方式进行编程输入。在编程时分别对控制、计数、锁存、译码等电路模块进行VHDL文本描述,使每个电路模块以及器件都以文本的形式出现,然后通过编译、波形分析、仿真、调试来完善每个器件的功能。单个器件制作完成后,然后将它们生成库文件,并产生相应的符号,最后用语言将各个已生成库文件的器件的各个端口连接在一起,从而形成了系统主电路的软件结构。在连接器件时,也可以采用图形输入方式,即在图形输入界面中调出先制作好的库文件器件符号,再将每个器件符号的各端口直接连线,从而构成系统主电路。在上述工作的基础上,再进行波形分析、仿真调试便完成整个软件设计6。第三章 硬件开发平台现场
23、可编程门阵列(FPGA)简介3.1 可编程逻辑器件可编程逻辑器件(PLD-Programmable Logic Devices)是一种由用户编程以实现某种逻辑功能的新型逻辑器件。它诞生于20 世纪70 年代,在20 世纪80 年代以后,随着集成电路技术和计算机技术的发展而迅速发展起来的。可编程逻辑器件自问世以来,PLD 经历了从PROM、PLA、PAL、GAL 到FPGA、ispLSI 等高密度PLD 的发展过程。在此期间,PLD 的集成度、速度不断提高,功能不断增强,结构趋于更合理,使用变得更灵活方便。PLD 的出现打破了由中小型通用型集成电路和大规模专用集成电路垄断的局面。与中小规模通用型
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 FPGA 多功能 计数器 设计
限制150内