基于CCD的便携式近红外光谱仪器总体设计.doc
《基于CCD的便携式近红外光谱仪器总体设计.doc》由会员分享,可在线阅读,更多相关《基于CCD的便携式近红外光谱仪器总体设计.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流基于CCD的便携式近红外光谱仪器总体设计.精品文档. 基于CCD的便携式近红外光谱仪器总体设计摘要 现代近红外光谱技术是90年代以来发展最快、最引人注目的光谱分析技术,被誉为分析巨人。由于近红外光谱技术具有分析速度快、成本低、无损无污染等优点,因而得到广泛应用。近红外光谱分析技术是利用反映原子和分子特征的发射与吸收光谱进行物质的化学组成及含量分析的物理方法。主要用于有机物质定性和定量分析的一种分析技术,特别是对于丰富的含氢基团(C-H、O-H、S-H、N-H等)有明显的光谱信息。近红外光谱分析技术综合了光谱学、化学计量学、计算机应用和基础测试
2、技术等多学科知识,从而实现了近红外光谱仪的光、机、电、算一体化设计。电荷耦合器件简称CCD,它的突出特点是以电荷作为信号,而不同于其它大多数器件是以电流或者电压为信号。CCD是一种光电转换器件。它以电荷包的形式储存和传送信息,主要由光敏单元,输入结构和输出结构等部份组成。CCD工作过程包括电荷的产生、存储、转移和读出四个环节。本文主要从工作原理和系统设计(包括确定仪器的工作原理、标准量的选择、信号转换与传输原理/方式的选择)、仪器的主要结构方案、主要参数和技术指标、系统简图、总体布局和总体精度分配来讲述了基于CCD的近红外光谱仪器的总体设计。关键词:近红外、CCD、总体设计1. 工作原理的选择
3、近红外光谱仪器提供准确反映被测样品物质成分及含量的吸收光谱。其基本组成结构包括:光源系统、分光系统、检测系统、控制及数据处理分析系统。NIRS仪器,按应用场合,分为实验室仪器、现场仪器和在线仪器等;按测样方式分有透射、漫反射、光纤测量等三种仪器。按分光方式分为:(1)滤光片型:第一台近红外光谱仪的分光系统(20世纪50年代后期)是滤光片分光系统。此类仪器只能在单一或少数几个波长下测定(非连续波长),灵活性差,而且波长稳定性、重现性差,如样品的基体发生变化,往往会引起较大的测量误差。“滤光片”被称为第一代分光技术。(2)光栅型:20世纪70年代中期至80年代,光栅扫描分光系统开始应用,但存在扫描
4、速度慢、波长重现性差、内部移动部件多的不足。此类仪器最大的弱点是光栅或反光镜的机械轴长时间连续使用易磨损,影响波长的精度和重现性,不适合作为过程分析仪器使用。“光栅”被称为第二代分光技术。(3)傅立叶变换型:20世纪80年代中后期至90年代中前期,应用“傅立叶变换”分光系统,但是由于干涉计中动镜的存在,仪器的在线可靠性受到限制,特别是对仪器的使用和放置环境有严格要求,比如室温、湿度、杂散光、震动等。“傅立叶变换”被称为第三代分光技术。(4)二极管阵列型:20世纪90年代中期,出现应用二极管阵列技术的近红外光谱仪。这种近红外光谱仪采用固定光栅,无机械移动部件、可靠性高、测量速度快。但仪器的波长范
5、围和分辨率有限,波长通常不超过1750nm。由于该波段检测到的主要是样品的三级和四级倍频,样品的摩尔吸收系数较低,因而需要的光程往往较长。“二极管阵列”被称为第四代分光技术。(5)声光可调滤光器型:20世纪90年代末,来自航天技术的“声光可调滤光器”(AOTF)技术的问世,被认为是“20世纪90年代近红外光谱仪最突出的进展”,AOTF是利用超声波与特定的晶体作用而产生分光的光电器件,与通常的单色器相比,采用声光调制即通过超声射频的变化实现光谱扫描,光学系统无移动性部件,波长切换快、重现性好,程序化的波长控制使得这种仪器的应用具有更大的灵活性,尤其是外部防尘和内置的温、湿度集成控制装置,大大提高
6、了仪器的环境适应性,加之全固态集成设计产生优异的防震性能,使其近年来在工业在线和现场(室外)分析中得到越来越广泛的应用。但分辨率相对较低,波长覆盖范围有限、通用性不好,核心部件价格贵。 综上比较各种类型的近红外光谱仪的优缺点,选择CCD二极管阵列型分光方式。2. 系统设计光源发出的光经过光谱仪狭缝入射到光栅单色仪的光栅上,被光栅分成多条光谱谱线,成像在光谱探测器焦面上。通过产生的CCD驱动电路、集成运放组成的信号处理电路、数据采集系统,数据通过接口送入计算机,用上层测控软件进行进一步的处理、存储、计算等。光谱仪器是进行光谱研究和物质的光谱分析的装置。它的基本作用是测定被研究的物质发射的、吸收的
7、、散射的或受激发射的荧光等的光谱组成,包括它的波长、强度与轮廓等。为此光谱仪应该具有的功能是:(1)把被研究的光信号按波长或波数分解开来:(2)测定各波长的光所具有的能量,得到能量按波长的分布;(3)把分解开的光波及其强度按波长或波数分布显示,记录下来,得到光谱图。3. 主要结构方案基于CCD的近红外光谱仪的基本组成有:光源、测样器件、分光系统、测控系统,图1给出了仪器的结构简图。图1 基于CCD的近红外光谱仪的结构简图光源作为工具照射被研究的物质,它向仪器提供能量,含有信号的光的能量通过传感器转换成含有信号的电能,使得仪器能够对样品进行定性定量分析。因此对光源的基本要求是在我们所测量的光谱区
8、域内即短波近红外区域能够发射足够强度的光辐射,并具有良好的稳定性。一般来说,光源的亮度不成问题,要获得稳定的光谱主要是解决光源的稳定性,而这主要通过高性能的光源能量监控和可靠电路系统来实现。测样器件是指承载样品或与样品作用的器件。由于近红外光及样品近红外光谱的特点,测样器件随测样方法的不同而有较大的差异。就实验室常规分析而言,液体样品可采用玻璃或石英样品池;固体可采用积分球或特定的漫反射载样器件;在定位或在线分析中经常采用光纤测样器件。根据本仪器的特点提出了采用光纤取样和样品池漫透射取样两种方法。分光系统的作用是将入射的复合光分解为光谱。它是近红外光谱仪器的核心部件。根据分光原理的不同,现在近
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 CCD 便携式 红外 光谱 仪器 总体 设计
限制150内