干式厌氧生物转化.doc
《干式厌氧生物转化.doc》由会员分享,可在线阅读,更多相关《干式厌氧生物转化.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流干式厌氧生物转化.精品文档.Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review通过干式厌氧生物转化过程从固体含量较高的有机基质中回收生物能源:综述SEVEN PARTS这篇论文主要分为七个部分1 Overview 1概述2 Substrate characterization for D-AnBioC processes2 干式厌氧生物转化系统的底物特性3 Reactor confi
2、gurations and operational sequences for D-AnBioC processes3干式厌氧生物转化过程的反应器的配置和操作顺序4 Techniques to enhance the bio-energy recovery by D-AnBioC process 4 通过干式厌氧生物转化的过程来提高生物能源回收的技术5Factors affecting D-AnBioC efficiency 5干式厌氧生物转化效率的影响因素6 Digested residue management from D-AnBioC process6干式厌氧生物转化过程中消化残余物的
3、管理7 Energy and economic factors associated with D-AnBioC process7 与干式厌氧生物转化过程相关的能源及经济因素8 Summary and future research directions8 总结及未来研究方向1 OverviewCurrently, anaerobic bio-conversion (AnBioC) of organic substrates (OS) is considered as the most common biotechnological solution due to its economical
4、 and energy recovery benefits.目前,由于固体含量高的有机基质的干厌氧生物转化在经济和能源回收方面的优势,使其成为了最常见的生物技术解决方案。In brief, OS are biochemically converted into bio-methane (CH4) under anaerobic conditions by the major groups of bacteria/archaea, such as hydrolyzers, acidogens, acetogens and methanogens.总之,在厌氧条件下,有机基质(OS)被一群主要为细
5、菌/古生菌的菌群通过生化反应生成甲烷,主要的菌群如水解菌、产酸菌、产乙酸菌和产甲烷菌。2 Substrate characterization for D-AnBioC processes2 干式厌氧生物转化系统的底物特性The D-AnBioC system is mainly designed to treat OS from four different sources, including, agriculture waste, community waste, animal waste and industrial waste.干式厌氧生物转化系统主要是设计处理四个不同来源的有机基质
6、(OS),包括农业废物、社区垃圾、动物废物和工业废物。Thus, TS of the OS substrates along with physicochemical properties of the substrates are to be mainly considered for the D-AnBioC process to control overall CH4 yield.因此,底物的有机基质(OS)中的总固体量连同底物的物理化学性质都被认为是干式厌氧生物转化过程中控制甲烷产生的主要因素。It was noted that the TS of OS influenced the
7、following parameters: rheological properties and viscosity of the reactor contents, fluid dynamics, clogging and solid sedimentation that can directly affect the overall mass transfer rates within the bioreactors.于是得出,有机基质(OS)的总固体含量会影响以下几种参数:流变学特性和反应器内的物质的粘度,流体动力学,堵塞,固体沉降会直接影响整个生物反应器中的传质速率。However,
8、the D-AnBioC systems seem to be more economical than W-AnBioC in treating OS because of the following: a smaller reactor volume, no internal mixing arrangement for continuous mixing (in some cases), can handle a variety of feed stocks, and can attain maximum CH4 yield.然而,在处理有机基质(OS)上,干式厌氧生物转化系统比湿式厌氧
9、生物转化系统更经济,原因如下:它的反应器容积更小,内部没有用于连续混合的混合装置(在某些情况下),能够处理各种各样的原料,能够获得最大的甲烷产量。3 Reactor configurations and operational sequences for D-AnBioC processes3干式厌氧生物转化过程的反应器的配置和操作顺序A number of commercial plants, pilot plants and proto-type bio-reactors to treat OS have been developed using the D-AnBioC processe
10、s. Four major considerations with the bio-reactor design for continuous operations include:很多商业性质的处理厂,中试处理厂和原生物反应器在处理有机基质(OS)上已经开始开发利用干式厌氧生物转化过程。四个连续运行的生物反应器的设计考虑的主要因素包括:Organic Loading Rate (OLR)(1)有机负荷率(OLR)有机负荷率(OLR)是测量厌氧系统的生物转化能力的一种方法。Solid/Digestate Retention Time (SRT)(2)固体/沼渣的保留时间(SRT)SRT是在单位
11、时间内流入的体积和有机基质(OS)流出的体积比。是固体停留在消化池中的平均停留时间。Hydraulic Retention Time (HRT)(3)水利停留时间(HRT) CH4 Yield(4)甲烷产量甲烷产量最大化是最重要的生物反应器设计参数,并且在操作运行的条件中起着关键的作用。3.1 Microbial dynamics and metabolite distribution with respect to bio-reactor design3.1微生物动力学和代谢产物的分布与生物反应器设计In general, four major classified groups of mi
12、croorganisms are involved in the bioconversion of OS into CH4, as depicted in Fig. 3.一般情况下,四大类的微生物参与生物将有机基质(OS)转化成甲烷,如图3所示。It has been reported that the hydrolysis/acidogenesis microorganisms have a faster growth rate (30 min) resulting in more than 90 % in total digester population during the initi
13、al stages. 有关报道表明,水解/酸化作用使微生物的增长速度更快(30分钟),从而导致在初始阶段产生的沼气比例大于90。As a first step in the AnBioC process, hydrolysis/acidogenesis of complex organic substrates produce VFAs, amino acids, alcohol, carbon dioxide (gas phase) and hydrogen (gas and liquid phase) within the system. Among the different acids
14、 produced, acetic acid will be more abundant than other acids like formic, propionic, valeric and butyric acids. Due to the accumulation of these organic acids, the system pH and ORP values will be 4.5 0.5 and 50 mV (Eh), respectively (Gerardi 2003).作为干式厌氧生物转化过程的第一步,水解/酸化过程的有机底物在系统中产生复杂的物质如挥发性脂肪酸,氨基
15、酸,醇,二氧化碳(气相)和氢气(气相和液相)。在不同的酸产生过程中,乙酸会比其他酸,如甲酸,丙酸,戊酸和丁酸更加丰富。由于这些有机酸的积累,该系统的pH和氧化还原电位(ORP)分别为 4.5 0.5和 50mV(Eh)(Gerard,2003)。In the second step, that is, the acidogenesis/ acetogenesis process, products like acetate, hydrogen and less amounts of CH4 are formed under a pH range of 3.56.0 and ORP -170 5
16、0 mV (Eh) (Gerardi 2003). Homoacetogen, a special group of bacteria, involved in the utilization of H2 and CO2 during this stage, produces acetate via the Wood-Ljungdahl pathway. 在第二步骤中,也就是酸化/产乙酸过程,产物如乙酸盐,氢和少量的CH4,形成的pH值范围为3.5-6.0和氧化还原电位(ORP)为-170 50mV(Eh)(Gerard,2003)。同型产乙酸菌是一群特殊的细菌,在这个阶段中涉及H2和CO2的
17、利用率,通过Wood-Ljungdahl途径产生醋酸。Also, acetogensis of propionic and butyric acids proceed under very low H2 partial pressure/ concentrations during the third stage (that is, acetogenesis) of anaerobic conversion. 同时,丙酸及丁酸的产酸菌产酸是在H2 分压/浓度非常低的情况下进行的,发生在厌氧转换期间的第三阶段 即,产酸。Followed by acetogenesis, acetoclastic
18、 methanogens which utilize acetate as a carbon source (Eq. 5), hydrogenotrophic methanogens which utilize hydrogen and carbon-dioxide (Eq. 6), and methylotrophic methanogens which utilize methyl alcohol (Eq. 7) produce CH4 during the last step. 随后,通过产乙酸菌,产甲烷菌(使用醋酸酯作为碳源(Eq.5),产氢产甲烷菌(利用氢气和二氧化碳(Eq.6),甲
19、醇产甲烷菌(利用甲醇(Eq.7)在最后一步产生甲烷。4 Techniques to enhance the bio-energy recovery by D-AnBioC process4 通过干式厌氧生物转化的过程来提高生物能源回收的技术There are a number of techniques proposed in the literature to improve the bio-energy recovery from OS under D-AnBioC processes. Generally, all these techniques were used either al
20、one or in combinations for the better performance of the bioreactor. The details are discussed below.有很多文献中提出提高有机基质(OS)的干式厌氧生物转化过程回收生物能源的技术。一般来说,所有这些技术单独使用或在生物反应器中结合使用以达到更好的性能。在下面进行详细地讨论。4.1Temperature4.1 温度Temperature is one technique to improve the efficiency of the system and reduce the overall S
21、RT in D-AnBioC processes.温度在干式厌氧生物转化过程可以提高系统效率、减少整体的固体/沼渣的停留时间。Thermophilic temperatures convert organic acids at a faster rate, with higher CH4 production (2535 %) than the mesophilic system.高温系统比中温系统转换有机酸的速度更快,CH4的产量也更高(25-35)。Net energy gain of more than 5075 % was reported with the thermophilic
22、D-AnBioC system (Zeshan et al. 2012).Zeshan等人在2012年曾报道在适温的干式厌氧生物转化系统中,净能量的收益超过50-75%。4.2Pre-treatment of substrates4.2 底物的预处理Generally, pre-treatment technologies were adopted to alter or remove these structural/compositional impediments to increase the yields of fermentable simple sugars/intended p
23、roducts in order to further process utilizations (Mosier et al. 2005).一般来说,预处理技术是通过改变或移除一些结构/成分障碍,增加可发酵单糖的产量/预期的产物,以进一步提高利用率的过程(Mosier等人,2005)。Specifically, any pretreatment technology is intended to: 预处理技术的目的:(1) free as much carbohydrates as possible into monomers; (1)使尽可能多的碳水化物尽可能转化成单体;(2) provid
24、e easy accessibility for bacterial or enzymatic action; (2)提供容易操作的细菌/酶促作用;(3) minimize sugar degradation and lignin solubilization;(3)减少糖降解和木质素的溶解; (4) be environmentally friendly and a less energy intensive process; (4)成为环境友好型和低能量密集型的过程;and (5) be a scalable, simple and robust system.(5)是一个可伸缩,简单的和
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 干式厌氧 生物转化
限制150内