应用回归分析论文1.doc
《应用回归分析论文1.doc》由会员分享,可在线阅读,更多相关《应用回归分析论文1.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流应用回归分析论文1.精品文档.关于影响GDP的回归分析摘要:GDP是体现国民经济增长状况和人民群众客观生活质量的重要指标。为了研究影响GDP的潜在因素,通过收集到的样本数据运用课本学过的回归分析知识,建立与GDP有影响的自变量与因变量间的多元线性回归模型,借助统计软件SPSS对样本作初等模型,同时结合统计专业知识对初等模型作F检验、回归系数检验、异方差性检验、假设检验等,确立最终的经验回归方程,回归方程对样本的是拟合度最好的。最后通过对做出来的模型分析得出GDP的主要影响因素,对提高GDP具有一定得现实意义。引言:在当今欧美主导的经济发展理论
2、下,衡量一个国家的综合实力看的不仅是国家的军事实力、国家影响力,而更看重国家的经济实力,而GDP代表一国或一个地区所有常住单位和个人在一定时期内全部生产活动的最终成果,是当期新创造财富的价值总量,它是一个国家经济实力的最好体现,具有国际可比性,是联合国国民经济核算体系(SNA)中最重要的总量指标,为世界各国广泛使用并用于国际比较。众所周知2008年我国GDP跃居世界第三位,是仅次于美国、日本的第三大经济国,而2009年在金融危机的影响下我国GDP稳中求进,依然保持着9.0%的增长态势。提高GDP已经成为经济发展的潮流,利用国家的各种有限资源,在最大程度上发挥资源的利用率,推动经济的发展是势在必
3、行的,因为资源一直在减少,而人口一直在增加,要保持经济的增长就必要抓住主要因素,提高GDP。一、多元线性回归模型的基本理论首先是对线性回归模型基本知识介绍:随机变量y与一般变量x1,x2,x3.xp的理论线性回归模型为:其中,., 是P+1个未知参数,称为回归常数,.,称为回归系数。y称为被解释变量(因变量),而x1,x2,.,xp是P个可以精确测量并可控制的一般变量,称为解释变量(自变量)。是随机误差,在多元线性回归模型中有五个基本假设:假设一:随机误差项0均值假定;假设二:随机误差项同方差 ;假设三:随机误差项不相关假设四:随机误差项服从如下正态分布只有求得的经验回归方程通过了回归分析中各
4、检验并满足上述四个假设时,我们才可以明确此时的经验回归方程对我们的样本数据拟合得好,可以用此时的回归模型作控制与预测了。二、回归模型初步建立与检验CoefficientsaModelUnstandardized CoefficientsStandardized CoefficientstSig.Collinearity StatisticsBStd. ErrorBetaToleranceVIF1(Constant)2.377E-15.058.0001.000Zscore: 居民消费水平(元).317.212.3171.493.148.07713.006Zscore: 固定资产投资(亿元).94
5、6.075.94612.666.000.6211.611Zscore: 职工平均工资(元).094.134.094.701.490.1925.211Zscore: 居民消费价格指数.069.069.0691.003.326.7291.371Zscore: 工业增加值率(%)-.067.092-.067-.732.471.4092.442Zscore: 农村居民家庭人均纯收入(元)-.288.218-.288-1.321.199.07313.683a. Dependent Variable: Zscore: GDP(亿元) 表(1)收集的数据由于存在单位上的差异,且数据量很大,故可能存在误差、量
6、纲的影响。首先将数据标准化,再对样本作模型假设,可得出y对6个自变量的线性回归方程为:y=2.377*E-15+0.317x1+0.946x2+0.094x3+0.069x4+0.069x5-0.067x5-0.288x6ANOVAbModelSum of SquaresdfMean SquareFSig.1Regression27.50864.58544.157.000aResidual2.49224.104Total30.00030a. Predictors: (Constant), Zscore: 农村居民家庭人均纯收入(元), Zscore: 固定资产投资(亿元), Zscore: 居
7、民消费价格指数, Zscore: 工业增加值率(%), Zscore: 职工平均工资(元), Zscore: 居民消费水平(元)b. Dependent Variable: Zscore: GDP(亿元)表(2)应用F检验对回归方程进行显著检验,检验统计量为:F=SSR/SSE,SSR为回归回归平方和,SSE为残差平方和,从上表中的结果可以看出显著性p值,由于p近似为0,在显著水平为0.05的条件下:p,可知其回归方程高度显著。三、回归方程系数检验但回归方程显著并不表示每个自变量对y的影响都显著,因此我们队方程的回归系数作显著性检验。如果某个自变量对y的作用不显著,那么在模型中相应的系数值就为
8、0。提出假设检验:H0:j=0,j=1,2p 若接受原假设,则自变量不显著;若拒绝原假设,那么相应的自变量是显著的。参考表(1),虽然该方程F检验回归方程是显著的,但在显著性水平取0.05时,某些单个自变量对y并不显著。CorrelationsZscore: GDP(亿元)Zscore: 居民消费水平(元)Zscore: 固定资产投资(亿元)Zscore: 职工平均工资(元)Zscore: 居民消费价格指数Zscore: 工业增加值率(%)Zscore: 农村居民家庭人均纯收入(元)Spearmans rhoZscore: GDP(亿元)Correlation Coefficient1.000
9、.629*.953*.187-.357*-.471*.732*Sig. (2-tailed).000.000.315.049.007.000N31313131313131Zscore: 居民消费水平(元)Correlation Coefficient.629*1.000.589*.491*-.318-.612*.879*Sig. (2-tailed).000.000.005.081.000.000N31313131313131Zscore: 固定资产投资(亿元)Correlation Coefficient.953*.589*1.000.143-.348-.425*.646*Sig. (2-t
10、ailed).000.000.444.055.017.000N31313131313131Zscore: 职工平均工资(元)Correlation Coefficient.187.491*.1431.000-.100-.280.357*Sig. (2-tailed).315.005.444.592.127.049N31313131313131Zscore: 居民消费价格指数Correlation Coefficient-.357*-.318-.348-.1001.000.475*-.445*Sig. (2-tailed).049.081.055.592.007.012N313131313131
11、31Zscore: 工业增加值率(%)Correlation Coefficient-.471*-.612*-.425*-.280.475*1.000-.663*Sig. (2-tailed).007.000.017.127.007.000N31313131313131Zscore: 农村居民家庭人均纯收入(元)Correlation Coefficient.732*.879*.646*.357*-.445*-.663*1.000Sig. (2-tailed).000.000.000.049.012.000.N31313131313131*. Correlation is significan
12、t at the 0.01 level (2-tailed).表(3)*. Correlation is significant at the 0.05 level (2-tailed).从上表中可以看出,y与x1、x2、x5的相关系数较大,说明自变量与y高度相关。其他几个变量对y的贡献不是很大,故需剔除一些变量。四、检验异方差性及自相关Model SummaryhModelRR SquareAdjusted R SquareStd. Error of the EstimateDurbin-Watson11.000a1.0001.000.0000000221.000b1.0001.000.00
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用 回归 分析 论文
限制150内