开关电源基础知识.doc
《开关电源基础知识.doc》由会员分享,可在线阅读,更多相关《开关电源基础知识.doc(44页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流 开关电源基础知识.精品文档. 开关电源就是用通过电路控制开关管进行高速的道通与截止将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50Hz高很多所以开关变压器可以做的很小,而且工作时不是很热!成本很低如果不将50Hz变为高频那开关电源就没有意义 开关电源大体可以分为隔离和非隔离两种,隔离型的必定有开关变压器,而非隔离的未必一定有. 开关电源的工作原理是: 1.交流电源输入经整流滤波成直流; 2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直
2、流加到开关变压器初级上; 3.开关变压器次级感应出高频电压,经整流滤波供给负载; 4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的. 交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰; 在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高; 开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出; 一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源ATX电源的主要组成部分EMI滤波电路:EMI滤波电路主要作用是滤除外界电网的高频脉冲对电源的干扰,同时也起到减少开关
3、电源本身对外界的电磁干扰,在优质电源中一般都有两极EMI滤波电路。一级EMI电路:交流电源插座上焊接的是一级EMI电源滤波器电路,这是一块独立的电路板,是交流电输入后所经过的第一组电路,这个由扼流圈和电容组成的低通网络能滤除电源线上的高频杂波和同相干扰信号,同时也将电源内部的干扰信号屏蔽起来,构成了电源抗电磁干扰的第一道防线。二级EMI电路:市电进入电源板后先通过电源保险丝,然后再次经过由电感和电容组成的第二道EMI电路以充分滤除高频杂波,然后再经过限流电阻进入高压整流滤波电路。保险丝能在电源功率太大或元件出现短路时熔断以保护电源内部的元件,而限流电阻含有金属氧化物成分,能限制瞬间的大电流,减
4、少电源对内部元件的电流冲击。桥式整流器和高压滤波:经过EMI滤波后的市电,再经过全桥整流和电容滤波后就变成了高压的直流电。将输入端的交流电转变为脉冲直流电,目前有两种形式,一种是全桥就是把四个二极管封装在一起,一种是用4个分立的二极管组成桥式整流电路,作用相同,效果也一样。一般说来,在全桥附近应该有两个或更多的高大桶状元件,即高压电解电容,其作用是将脉动的直流电滤除交流成分而输出比较平稳的直流电。高压电解电容的使用与开关电路的设计有密切关系,其容量往往是以往电源评测时的焦点,但实际上它的容量和电源的功率毫无关系,不过增大它的容量会减小电源的纹波干扰,提高电源的电流输出质量。PFC电路:PFC电
5、路称为功率因素校正或补偿电路,功率因素越高,电能利用率就越大。目前PFC电路有两种方式,一种是无源式PFC,又称被动式PFC,一种是有源式PFC,又称主动式PFC。无源式PFC是通过一个工频电感来补偿交流输入的基波电流与电压的相位差,迫使电流与电压相位一致,无源PFC效率较低,一般只有65%-70%,且所用的工频电感又大又笨重,但由于成本低,仍有许多 ATX电源采用这种方式。有源PFC是由电子元器件组成的,体积小,重量轻,通过专用的IC去调整电流波形的相位,效率大大提高,达95%以上,但由于成本较高,通常只能在高级应用场合才能看到。开关三极管与开关变压器:开关电源顾名思义其核心就是开关二字。开
6、关三极管和开关变压器是开关电源的核心部件,通过自激式或他激式使开关管工作在饱和、截止(即开、关)状态,从而在开关变压器的副绕组上感应出高频电压,再经过整流、滤波和稳压后输出各种直流电压。开关三极管和开关变压器是ATX电源的核心部件,其质量直接影响电源的好坏和使用寿命,尤其是开关三极管,工作在高反压状态下,没有足够的保护电路,很容易击穿烧毁。开关管的品质直接决定了电源的稳定性,它也是电源中主要的发热元件,拆开电源后看到的主散热片上的两个晶体管就是开关管。影响高频开关变压器性能的因素包括铁氧体的效率、磁芯截面积的大小和磁隙的宽度,截面积过小的变压器容易产生磁饱和而无法输出较大的功率,各个绕组的匝数
7、直接影响输出的电压,通常我们无法具体的掌握这些参数,所以无法准确的判断变压器到底能输出多大的功率,只有通过电子负载机测量才能知道,另外,开关变压器的输出端虽然很多,但其中的某些输出端使用的却是相同的绕组,比如+3.3VDC和+5VDC就是这样,所以当+3.3VDC输出最大电流时+ 5VDC就无法输出很大的电流了,所以我们不能将电源各个输出端的功率进行简单的累加。除主变压器外,一般电源内还应有两个小变压器,其中一个将开关电路控制信号进行放大以驱动开关管进行工作,同时还可以将开关管工作的高压区和集成电路工作的低压区进行物理隔离。另外一个完全是一套独立的小型开关电源,这就是我们所说的待机电路,其输出
8、的电压为电源的主电路供电,同时通过+5V StandBy端输出到主板来实现唤醒功能。低压整流滤波电路:经过高频开头变压器降压后的脉动电压同样要使用二极管和电容进行整流和滤波,只是此时整流时的工作频率很高,必须使用具有快速恢复功能的肖特基整流二极管,普通的整流二极管难当此任,而整流部分使用的电容也不能有太大的交流阻抗,否则就无法滤除其中的高频交流成分,因此选择的电容不但容量要大,还要有较低的交流电阻才行,此外还能见到1、2个体积硕大的带磁心的电感线圈,与滤波电容一起滤除高频的交流成分,保证输出纯净的直流电。由于低压整流端需要输出很大的电流,所以整流二极管同样会产生大量的热量,这些二极管与前面的开
9、关管都需要单独的散热片进行散热,电源中另一个散热片上所固定的就是这些元件。从这些元件输出的就是各种不同电压的输出电流了。稳压和保护电路:稳压电路通常是从电源输出端的输出电压取样出部分电压与标准电压作比较,比较出的差值经过放大后去驱动开关三极管,调节开关管的占空比,从而达到电压的稳定。保护电路的作用是通过检测各端输出电压或电流的变化,当输出端发生短路、过压、过流、过载、欠压等到现象时,保护电路动作,切断开关管的激励信号,使开关管停振,输出电压和电流为零,起到保护作用 开关电源输出电压的原因 标签:开关电源 明纬电源 开关电源厂分类:综合电源技术更新日期:2009-04-03 16:13 1)22
10、0V交流电压输入和整流滤波电路对开关管提供的工作电压不够,超出脉宽调整电路控制范围。2)负载电路存在过流引起开关电源负载加重而导致输出电压下降。3)开关机切换错误,行扫描电路刚开始工作瞬间,开关电源即处于待机状态,此类故障适用于无预备电源的机器,CPU电源取自同一个电源,非副电源提供。4)开关机接口电路末端因故障处于开机与待机之间的状态,从而导致开关电源输出电压低于正常值高于待机值。5)保护电路末端因故障进入导通状态,使电源进入弱振状态,引起开关电源输出电压下降。6)整流输出电路中二极管和滤波电容、限流电阻损坏引起输出电压低。7)脉宽调制电路故障,不能对开关电源输出电压的变化作出正确的响应,对
11、开关管基极电压调整方向不对,从而造成开关电源输出电压低。8)正反馈电路中的正反馈电阻值变化,续流二极管性能变质或恒流源故障,使正反馈量不足,导致振荡周期变长,振荡频率下降,从而引起开关电源输出电压低。9)它激式开关电源因未得到行逆程脉冲而工作于低频状态,造成输出电压低。2判断故障的方法与步骤从上述分析的原因看出,引起电压低的原因涉及到了开关电源自身的各个部分和与开关电源相关的所有电路,在检修时应先缩小故障范围。1)先测开关管c极电压,确认开关管供电正常。2)根据开关电源各个输出端电压判断故障。开关电源有的输出端电压正常,有的低于正常值。故障在输出电压低的这个整流输出电路,应对电路中的限流电阻、
12、整流二极管、滤波电容进行检查代换,若限流电阻发烫,说明负载过流,查负载。开关电源各路输出均低。这种情况说明负载和整流输出电路均正常,故障在开关电源的正反馈电路、脉宽调整、开待机电路、保护电路。输出电压有的下降比例大,有的输出电压下降比例小。测量结果说明故障在输出电压下降比例大的电路。此时可断开此路负载,如果断开的是行电路,应接假负载。在断开负载后,再测开关电源各输出端电压,若恢复正常,可判断所断电路的负载有过流现象。若仍不正常,说明故障在该整流滤波电路。 3)断开主负载、接上灯泡,判断是否负载故障。有些收台图闪、带负载后电压不稳的机器,难于鉴别故障是在电源或是负载时,可以采用“借法”,用此电源
13、带同等尺寸、相同B+电压的另一台机器行负载,进行判断。4)保留启动、正反馈、软启动及负反馈电路。逐取消各种保护电路、待机控制电路末端三极管。开机观察故障是否消除,来逐步缩小故障范围。注意:兼有稳压作用的电路不能断开(例如光电耦合器)。断开保护电路时,须谨慎,并采取防止电压升高的措施。5)采用替代法、检修脉宽调整电路。用自制取样电路取代原取样电路,判断故障范围。代换后,电压恢复正常,说明故障在取样电路及光耦电路。电压仍低,则断开原取样电路B十接入点,如果电压还低,则检查B+滤波电容,确认良好后,可以圈定故障在热底板部分。先查软启动电路是否对开关管B极分流了。仍不行,查正反馈、负反馈电路。查热底板
14、部分的负反馈方法同检查电压高的方法相近,采用迫使B+输出高的思路(注意改变工作点不能造成B+过高扩大故障)。总之,在电源的维修中,当电压不稳时可采用逆向思维,电压高时使之变低,电压低时使之变高,必要时可采用人为改变工作点电压。以利于查找故障点,在于维修人员灵活掌握。这里只想为初学人员起“抛砖引玉”的作用。 开关电源中磁性元器件 标签:开关电源 明纬电源 开关电源厂分类:综合电源技术更新日期:2009-04-02 16:46 几乎所有电源电路中,都离不开磁性元器件电感器或变压器。例如在输入和输出端采用电感滤除开关波形的谐波;在谐振变换器中用电感与电容产生谐振以获得正弦波电压和电流;在缓冲电路中,
15、用电感限制功率器件电流变化率;在升压式变换器中,储能和传输能量;有时还用电感限制电路的瞬态电流等。而变压器用来将两个系统之间电气隔离,电压或阻抗变换,或产生相位移(3 相 Y 变换),存储和传输能量(反激变压器),以及电压和电流检测(电压和电流互感器)。可以说磁性元件是电力电子技术最重要的组成部分之一。磁性元器件电感器和变压器与其他电气元件不同,使用者很难采购到符合自己要求的电感和变压器。对于工业产品,应当有一个在规定范围内通用的规范化的参数,这对磁性元件来说是非常困难的。而表征磁性元件的大多数参数(电感量,电压,电流,处理能量,频率,匝比,漏感,损耗)对制造商是无所适从的。相反,具体设计一个
16、磁性元件在满足电气性能条件下,可综合考虑成本,体积,重量和制造的困难程度,在一定的条件下可获得较满意的结果。由于很难从市场上购得标准的磁性元器件,开关电源设计工作的大部分就是磁性元件的设计。有经验的开关电源设计者深知,开关电源设计的成败在很大程度上取决于磁性元件的正确设计和制作。高频变压器和电感固有的寄生参数,引起电路中各色各样的问题,例如高损耗、必须用缓冲或箝位电路处理的高电压尖峰、多路输出之间交叉调节性能差、输出或输入噪声耦合和占空度范围限制等等,对初步进入开关电源领域的工程师往往感到手足无措。 磁性元件的分析和设计比电路设计复杂得多,要直接得到唯一的答案是困难的。因为要涉及到许多因素,因
17、此设计结果绝不是唯一合理的。例如,不允许超过某一定体积,有几个用不同材料的设计可以满足要求,但如果进一步要求成本最低,则限制了设计的选择范围。因此最优问题是多目标的,相对的。或许是最小的体积,最低成本,或是最高效率等等。最终的解决方案与主观因素、设计者经验和市场供应情况有关。另一方面,正确的设计不只是一般电路设计意义上的参数计算。还应当包含结构、工艺和散热等设计,而且是更重要的设计。高频开关电源的很多麻烦是由于磁性元件工艺、结构和制造不合理引起的。 尽管磁性元件设计结果是相对的,不是唯一的。但至少设计结果应当是合理的。因此,开关电源设计者应当有比较好的磁学基础。遗憾的是在现今中等专业学校和高等
18、院校中磁的讲解偏少,尤其是应用于开关电源的实际磁的概念更少涉及。为此,本书试图在讲清工程电磁的最基本概念的基础上,介绍磁性材料性能和选用以及高频条件下磁性元件工作的特殊问题、磁性元件设计的一般方法和工艺结构。给初学者初步提供理论依据和经验数据,为进入“黑色艺术殿堂”打下必要的基础,并通过自己的不断实践,也成为开关电源磁性元件的专家。 开关电源 标签:开关电源 明纬电源 开关电源厂分类:综合电源技术更新日期:2009-04-01 16:55 开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构
19、成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。开关电源的分类 人们在开关电源技术领域是边开发相关电力电子器件,边开发开关变频
20、技术,两者相互促进推动着开关电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。以下分别对两类开关电源的结构和特性作以阐述。 2.1DC/DC变换 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰
21、)。其具体的电路由以下几类: (1)Buck电路降压斩波器,其输出平均电压 U0小于输入电压Ui,极性相同。 (2)Boost电路升压斩波器,其输出平均电压 U0大于输入电压Ui,极性相同。 (3)BuckBoost电路降压或升压斩波器,其 输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路降压或升压斩波器,其输出平均电 压U0大于或小于输入电压Ui,极性相反,电容传输。 当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6.2、10、17)W/
22、cm3,效率为(8090)。日本NemicLambda公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOSFET代替肖特基二极管),使整个电路效率提高到90。 2.2AC/DC变换 AC/DC变换是将交流变换为直流,其功率流向可以是双向的,功率流由电源流向负载的称为“整流”,功率流由负载返回电源的称为“有源逆变”。AC/DC变换器输入为50/60Hz的交流电,因必须经整流、滤波,因此体积相对较大的滤波电容器是必不可少的,同时因遇到安全标准(如UL、CCEE等)及EMC指令的限制(如IEC、FCC、C
23、SA),交流输入侧必须加EMC滤波及使用符合安全标准的元件,这样就限制AC/DC电源体积的小型化,另外,由于内部的高频、高压、大电流开关动作,使得解决EMC电磁兼容问题难度加大,也就对内部高密度安装电路设计提出了很高的要求,由于同样的原因,高电压、大电流开关使得电源工作损耗增大,限制了AC/DC变换器模块化的进程,因此必须采用电源系统优化设计方法才能使其工作效率达到一定的满意程度。 AC/DC变换按电路的接线方式可分为,半波电路、全波电路。按电源相数可分为,单相、三相、多相。按电路工作象限又可分为一象限、二象限、三象限、四象限。 开关电源的选用 开关电源在输入抗干扰性能上,由于其自身电路结构的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 开关电源 基础知识
限制150内