应力详细分析.doc
《应力详细分析.doc》由会员分享,可在线阅读,更多相关《应力详细分析.doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流应力详细分析.精品文档.学习思路: 本节介绍弹性力学的基本概念体力和面力,体力Fb和面力Fs的概念均不难理解。 应该注意的问题是,在弹性力学中,虽然体力和面力都是矢量,但是它们均为作用于一点的力,而且体力是指单位体积的力;面力为单位面积的作用力。 体力矢量用Fb表示,其沿三个坐标轴的分量用Fbi(i=1,2,3)或者Fbx、Fby和Fbz表示,称为体力分量。 面力矢量用Fs表示,其分量用Fsi(i=1,2,3)或者Fsx、Fsy和Fsz表示。 体力和面力分量的方向均规定与坐标轴方向一致为正,反之为负。 学习要点: 1. 体力; 2. 面力。
2、作用于物体的外力可以分为两种类型:体力和面力。 所谓体力就是分布在物体整个体积内部各个质点上的力,又称为质量力。例如物体的重力,惯性力,电磁力等等。 面力是分布在物体表面上的力,例如风力,静水压力,物体之间的接触力等。 为了表明物体在xyz 坐标系内任意一点P 所受体力的大小和方向,在P点的邻域取一微小体积元素V, 如图所示设V 的体力合力为F,则P点的体力定义为 令微小体积元素V 趋近于0,则可以定义一点P的体力为 一般来讲,物体内部各点处的体力是不相同的。 物体内任一点的体力用Fb表示,称为体力矢量,其方向由该点的体力合力方向确定。 体力沿三个坐标轴的分量用Fbi( i = 1,2,3)或
3、者Fbx,Fby,Fbz表示,称为体力分量。体力分量的方向规定与坐标轴方向一致为正,反之为负。 应该注意的是:在弹性力学中,体力是指单位体积的力。 类似于体力,可以给出面力的定义。 对于物体表面上的任一点P,在P 点的邻域取一包含P点的微小面积元素S,如图所示 。设S 上作用的面力合力为 F,则P 点的面力定义为 面力矢量是单位面积上的作用力,面力是弹性体表面坐标的函数。一般条件下,面力边界条件是弹性力学问题求解的主要条件。 面力矢量用Fs表示,其分量用Fsi(i=1,2,3)或者Fsx、Fsy和Fsz表示。 面力的方向规定以与坐标轴方向一致为正,反之为负。 弹性力学中的面力均定义为单位面积的
4、面力。应力分量学习思路: 物体在外界因素作用下,物体内部各个部分之间将产生相互作用,物体内部相互作用力称为内力。为讨论弹性体的强度,将单位面积的内力,就是内力集度定义为应力。 pn为过任意点M,法线方向为n的微分面上的应力矢量。应力矢量不仅随点的位置改变而变化,而且即使在同一点,也由于截面的法线方向n的方向改变而变化。 一点所有截面的应力矢量的集合称为一点的应力状态。讨论一点各个截面的应力变化趋势称为应力状态分析。 凡是应力均必须说明是物体内哪一点,并且通过该点哪一个微分面的应力。应力状态对于研究物体的强度是十分重要的。显然,作为弹性体内部一个确定点的各个截面的应力矢量,就是应力状态必然存在一
5、定的关系。不可能也不必要写出一点所有截面的应力。为了准确、明了地描述一点的应力状态,必须使用合理的应力参数。 为了探讨各个截面应力的变化趋势,确定可以描述应力状态的参数,通常将应力矢量分解。学习要点: 1. 应力矢量; 2. 应力矢量的分解; 3. 应力分量。物体在外界因素作用下,例如外力,温度变化等,物体内部各个部分之间将产生相互作用,这种物体一部分与相邻部分之间的作用力称为内力。 内力的计算可以采用截面法,即利用假想平面将物体截为两部分,将希望计算内力的截面暴露出来,通过平衡关系计算截面内力F。 内力的分布一般是不均匀的。为了描述任意一点M的内力,在截面上选取一个包含M的微面积单元S,如图
6、所示 则可认为微面积上的内力主矢F的分布是均匀的。设S 的法线方向为n,则定义: 上式中pn为微面积S 上的平均应力。如果令S 逐渐减小,并且趋近于零,取极限可得 上述分析可见:pn是通过任意点M,法线方向为n的微分面上的应力矢量。 应力pn是矢量,方向由内力主矢F确定,又受S方位变化的影响。 应力矢量不仅随点的位置改变而变化,而且即使在同一点,也由于截面的法线方向n的方向改变而变化。这种性质称为应力状态。因此凡是应力均必须说明是物体内哪一点,并且通过该点哪一个微分面的应力。 一点所有截面的应力矢量的集合称为一点的应力状态。应力状态对于研究物体的强度是十分重要的。显然,作为弹性体内部一个确定点
7、的各个截面的应力矢量,就是应力状态必然存在一定的关系。不可能也不必要写出一点所有截面的应力。为了准确、明了地描述一点的应力状态,必须使用合理的应力参数。 讨论一点各个截面的应力变化趋势称为应力状态分析。为了探讨各个截面应力的变化趋势,确定可以描述应力状态的参数,通常将应力矢量分解。 应力矢量的一种分解方法是将应力矢量pn在给定的坐标系下沿三个坐标轴方向分解,如用px, py, pz表示其分量,则 pn=px i + py j+ pz k 这种形式的分解并没有工程实际应用的价值。它的主要用途在于作为工具用于推导弹性力学基本方程。 另一种分解方法,如图所示,是将应力矢量 pn沿微分面S的法线和切线
8、方向分解。与微分面S 法线 n方向的投影称为正应力,用s n表示;平行于微分面S 的投影称为切应力或剪应力,切应力作用于截面内,用t n 表示。 弹性体的强度与正应力和切应力息息相关,因此这是工程结构分析中经常使用的应力分解形式。 由于微分面法线 n 的方向只有一个,因此说明截面方位就确定了正应力 s n 的方向。但是平行于微分面的方向有无穷多,因此切应力t n不仅需要确定截面方位,还必须指明方向。为了表达弹性体内部任意一点M 的应力状态,利用三个与坐标轴方向一致的微分面,通过M点截取一个平行六面体单元,如图所示。 将六面体单元各个截面上的应力矢量分别向3个坐标轴投影,可以得到应力分量sij。
9、 应力分量的第一脚标 i 表示该应力所在微分面的方向,即微分面外法线的方向; 第二脚标 j 表示应力的方向。如果应力分量与 j 坐标轴方向一致为正,反之为负。 如果两个脚标相同, ij,则应力分量方向与作用平面法线方向一致,这是正应力,可以并写为一个脚标,例如s x。 如果两脚标不同,ij,则应力分量方向与作用平面法线方向不同,这是切应力,例如txy。 六面体单元的3对截面共有九个应力分量sij。 应该注意:1.可以证明sij=sji(声学基础。杜功焕 517页) 2. 在已知的坐标系中应力状态通常用应力张量应力分量是应力矢量在坐标轴上的投影,因此是标量,而不是矢量。表示。使用应力张量可以完整
10、地描述一点的应力状态。学习思路: 应力矢量不仅随点的位置改变而变化,而且也由于截面的法线方向n的方向改变而变化,研究这一变化规律称为应力状态分析。如果应力分量能够描述一点的应力状态,那么应力分量与其它应力参数必然有内在联系。 本节分析应力矢量与应力分量之间的关系,为深入讨论应力状态作准备。 利用三个坐标平面和一个任意斜截面构造微分四面体单元,通过四面体单元探讨坐标平面的应力分量和斜截面上的应力矢量的关系。 根据平衡关系,推导任意斜截面的应力矢量、法线方向余弦和各个应力分量之间的关系。 分析表明:一点的应力分量确定后,任意斜截面的应力矢量是确定的。学习要点: 1. 微分四面体单元; 2. 应力矢
11、量与应力分量。 一点的九个应力分量如果能够完全确定一点的应力状态,则其必须能够表达通过该点的任意斜截面上的应力矢量。 为了说明这一问题,在O点用三个坐标面和一任意斜截面截取一个微分四面体单元, 如图所示 。 斜截面的法线方向矢量为n,它的三个方向余弦分别为l,m和n。 设斜截面上的应力为pn,i,j 和 k 分别为三个坐标轴方向的单位矢量,pn在坐标轴上的投影分别为px, py, pz。则应力矢量可以表示为 pn = pxi+ py j+ pz k同样,把单位体积的质量所受的体积力Fb沿坐标轴分解,有Fb = Fbxi+ Fby j+ Fbz k设S为ABC的面积,则 OBC=lS, OCA=
12、mS, OAB=nSABC的法线方向的单位矢量可表示为 n = l i+ l j + m k 微分四面体在应力矢量和体积力作用下应满足平衡条件,设h为O点至斜面ABC的高,由x方向的平衡,可得将公式代入上式,则 对于微分四面体单元,h与单元体棱边相关,因此与1相比为小量,趋近于零,因此同理 如果采用张量记号,则上述公式可以表示为 上式给出了物体内一点的9个应力分量和通过同一点的各个微分面上的应力之间的关系。这一关系式表明,只要有了应力分量,就能够确定一点任意截面的应力矢量,或者正应力和切应力。因此应力分量可以确定一点的应力状态。学习思路: 物体在外力作用下产生变形,最后达到平衡位置。平衡不仅是
13、指整个物体,而且弹性体的任何部分也是平衡的。 本节通过微分平行六面体单元讨论弹性体内部任意一点的平衡。 应该注意:在讨论微分单元体平衡时,考虑到坐标的微小变化将导致应力分量的相应改变。即坐标有增量时,应力分量也有对应的增量。这个增量作为高阶小量,如果不涉及微分单元体平衡时是可以不考虑的。 微分平衡方程描述了弹性体内部任意一点的平衡,确定了应力分量与体力之间的关系。又称为纳维(Navier)方程。 平衡微分方程描述弹性体内部应力分量与体力之间的微分关系,是弹性力学的第一个基本方程。 切应力互等定理是弹性体力矩平衡的结果。学习要点: 1. 微分单元体及平衡关系; 2. 平衡微分方程与切应力互等定理
14、。物体在外力作用下产生变形,最后达到平衡位置。不仅整个物体是平衡的,而且弹性体的任何部分也都是平衡的。 为了考察弹性体内部的平衡,通过微分平行六面体单元讨论任意一点M 的平衡。在物体内,通过任意点M,用三组与坐标轴平行的平面截取一正六面体单元,单元的棱边分别与x,y,z轴平行,棱边分别长dx,dy,dz。如图所示,讨论微分平行六面体单元的平衡。 在x面上有应力分量sx , t xy 和 t xz ;在x+dx面上,应力分量相对x 截面有一个增量,取一阶增量,则。对y,z方向的应力分量作同样处理。 根据微分单元体x方向平衡,Fx=0,则 简化并且略去高阶小量,可得 同理考虑y,z方向,有 上述公
15、式给出了应力和体力之间的平衡关系,称为平衡微分方程,又叫纳维(Navier)方程。 用张量形式表示,可以写作 如果考虑微分单元体的力矩平衡, 则可以得到t xy =t yx, t yz=tzy, tzx=txz 由此可见,切应力是成对出现的,9个应力分量中仅有6个是独立的。 上述关系式又称作切应力互等定理。用张量形式表示,则sij = sji学习思路: 在弹性体内部,应力分量必须与体力满足平衡微分方程;在弹性体的表面,应力分量必须与表面力满足面力边界条件,以维持弹性体表面的平衡。 面力边界条件的推导时,参考了应力矢量与应力分量关系表达式。只要注意到物体边界任意一点的微分四面体单元表面作用应力分
16、量和面力之间的关系就可以得到。 面力边界条件描述弹性体表面的平衡,而平衡微分方程描述物体内部的平衡。当然,对于弹性体,这仅是静力学可能的平衡,还不是弹性体实际存在的平衡。 面力边界条件确定的是弹性体表面外力与弹性体内部趋近于边界的应力分量的关系。学习要点: 1. 面力边界条件。物体在外力作用下处于平衡状态,不仅整体,而且任意部分都是平衡的。在弹性体内部,应力分量必须与体力满足平衡微分方程;在弹性体的表面,应力分量须与表面力满足面力边界条件,以满足弹性体表面的平衡。 考虑物体表面任一微分四面体的平衡,如图所示。 由于物体表面受到表面力,如压力和接触力等的作用, 设单位面积上的面力分量为Fsx、F
17、sy和Fsz ,物体外表面法线n的方向余弦为l,m,n。参考应力矢量与应力分量的关系,可得 用张量符号可以表示为 上述公式是弹性体表面微分单元体保持平衡的必要条件,公式左边表示物体表面的外力,右边是弹性体内部趋近于边界的应力分量。公式给出了应力分量与面力之间的关系,称为静力边界条件或面力边界条件。 平衡微分方程和面力边界条件都是平衡条件的表达形式,前者表示物体内部的平衡,后者表示物体边界部分的平衡。 显然,若已知应力分量满足平衡微分方程和面力边界条件,则物体平衡;反之,如物体平衡,则应力分量必须满足平衡微分方程和面力边界条件。学习思路: 一点的应力不仅随着点的位置改变而变化,而且由于截面的法线
18、方向不同,截面上的应力也不同。因此必须探讨一点任意截面应力之间的变化关系。应力分量能够描述一点的应力状态,因此确定不同截面应力分量的变化规律,就可以确定应力状态。 本节分析坐标系改变时应力分量的变化规律。为了简化分析,首先假设斜截面的法线与新坐标轴方向相同,建立斜截面应力矢量表达式。然后利用斜截面应力矢量与应力分量的关系,将应力矢量投影于各个坐标轴得到应力分量表达式。 应力分量的转轴公式说明:应力分量满足张量变换条件。 根据切应力互等定理,应力张量是二阶对称张量。 转轴公式说明了一点的应力状态,尽管截面方位的变化导致应力分量改变,但是一点的应力状态是不变的。学习要点: 1. 坐标系的变换; 2
19、. 坐标平面的应力矢量; 3. 应力分量的投影; 4. 应力分量转轴公式; 5. 平面问题的转轴公式。返回 一点的应力不仅是坐标的函数,随着弹性体中点的位置改变而变化,而且即使同一点,由于截面的法线方向不同,截面上的应力也不相同。一点的应力随着截面的法线方向的改变而变化称为应力状态。 应力状态分析就是讨论一点不同截面的应力变化规律。由于应力分量可以描述应力状态,因此讨论坐标系改变时,一点的各个应力分量的变化就可以确定应力状态。 当坐标系改变时,同一点的各个应力分量将作如何的改变。 容易证明,坐标系仅作平移变换时,同一点的应力分量是不会改变的,因此只须考虑坐标系旋转的情况。 假设在已知坐标系Ox
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应力 详细 分析
限制150内