微生物在污水处理中的应用.doc
《微生物在污水处理中的应用.doc》由会员分享,可在线阅读,更多相关《微生物在污水处理中的应用.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流微生物在污水处理中的应用.精品文档.微生物在污水处理中的应用摘要:本文主要阐述了各种微生物在不同种类污水中的应用,以及它们不同的应用机理。关键词:微生物 生活污水 工业污水 农业污水 重金属 农药1.世界水资源现状环境保护是我国的基本国策。世界经济发展的实践证明,为实现经济的持续稳定的发展,必须解决好发展与环境保护的矛盾。全球水资源状况迅速恶化,“水危机”日趋严重。据水文地理学家的估算,地球上的水资源总量约为亿立方公里,其中是海水(亿立方公里)。淡水只占,其中绝大部分为极地冰雪冰川和地下水,适宜人类享用的仅为20世纪年代以后,全球人口急剧增长
2、,工业发展迅速。一方面,人类对水资源的需求以惊人的速度扩大;另一方面,日益严重的水污染蚕食大量可供消费的水资源。本届世界水论坛提供的联合国水资源世界评估报告显示,全世界每天约有吨垃圾倒进河流、湖泊和小溪,每升废水会污染升淡水;所有流经亚洲城市的河流均被污染;美国的水资源流域被加工食品废料、金属、肥料和杀虫剂污染;欧洲条河流中仅有条水质差强人意。20世纪,世界人口增加了两倍,而人类用水增加了倍。世界上许多国家正面临水资源危机:亿人用水短缺,亿人缺乏用水卫生设施,每年有万到万人死于和水有关的疾病。到年,水危机将蔓延到个国家,亿人为水所困。水资源危机带来的生态系统恶化和生物多样性破坏,也将严重威胁人
3、类生存。水资源危机既阻碍世界可持续发展,也威胁着世界和平。过去年中,由水引发的冲突共起,其中起有暴力性质,起演变为军事冲突。专家警告说,随着水资源日益紧缺,水的争夺战将愈演愈烈。2.污水处理方法分类2.1物理法利用物理作用分离废水中呈悬浮状态的污染物质。主要有沉淀法,过滤法,离心分离法,吸附法等。2.2化学法利用化学反应原理及方法来分离,回收废水中的污染物,或改变污染物的性质,使它从有害变为无害的处理法。主要有化学凝聚法,中和法,氧化还原法,离子交换法。2.3生物法主要利用微生物的生命活动过程,对废水中的污染物质进行转移和转化的作用,从而是污水得到净化的方法。2.4.微生物简介微生物是肉眼看不
4、见或看不清的生物的总称。包括原核生物(细菌,放线菌和蓝细菌),真核生物(真菌和微型藻类),非细胞生物(病毒类)。微生物具有体积小、表面积大、繁殖力惊人等特点,能不断与周围环境快速进行物质交换。污水具备微生物生长繁殖的条件,因而微生物能从污水中获取养分,同时降解和利用有害物质,从而使污水得到净化。因此微生物可在污水净化和治理中得到广泛应用,造福人类。微生物能降解和转化污染物主要是因为微生物具有以下几个特点:个体微小,比表面积大,代谢速率快;种类繁多,分布广泛,代谢类型多样;具有多种降解酶;繁殖快,易变异,适应性强;共代谢作用等。3.原理 利用微生物处理污水实际就是通过微生物的新陈代谢活动,将污水
5、中的有机物分解,从而达到净化污水的目的.微生物能从污水中摄取糖,蛋白质,脂肪,淀粉及其它低分子化合物。微生物新陈代谢类型有需氧型和厌氧型两种,因此,净化方法分为好氧净化和厌氧净化.3.1.好氧净化 氧存在条件下,许多好氧微生物通过分解代谢、合成代谢和物质矿物化,在把有机物氧化分解成CO2和H2O等过程中,获寻C源、N源、P源、S和能量。污水的微生物好氧净化就是模拟上述原理,把微生物置于一定的构筑物内通气培养,高效率净化污水的方法。 3.2厌氧净化微生物在严格厌氧条件下,有机物发酵或消化过程中,大部分有机物被解生成H2、CO2、H2S和CH4等气体。污水的生物厌氧净化就是根据污水经厌氧发酵后既到
6、净化,又获得了生物能源CH4的原理。微物细胞能量转移的电子受体,由好氧条件下分子氧改变为厌氧条件下的有机物。在厌氧件下,不溶于水而难分解的大分子有机污物,被微生物的胞外酶降解为可溶性物质,再由产甲烷厌氧细菌和产氢细菌降解成低分子有酸类和醇类、并放出H2和CO2;有机酸类和类经产甲烷菌降解成H2、CO2和CH4。甲烷菌还可利用H2还原CO2,形成CH4。 微生物净化过程: .有机污染物的浓度由高变低 .异养细菌迅速氧化分解有机污染物而大量繁殖,然后是以细菌为食料的原生动物出现数量高峰,再后是由于有机物矿化,利于藻类的生长,而出现藻类的生长高峰。 .溶解氧浓度随着有机物被微生物氧化分解而大量消耗,
7、很快降到最低点,随后,由于有机物的无机化和藻类的光合作用及其他好氧微生物数量的下降,溶解氧又恢复到原来水平。 这样,在离开污染源相当的距离之后,水中的微生物数量,有机物,无机物的含量,也都下降到最低点。于是,水体恢复到原来的状态。 微生物处理优点:微生物具有来源广,易培养,繁殖快,对环境适应性强,易变异的特征在生产上较容易的采集菌种进行培养繁殖,并在特定条件下进行驯化,使之适应不同的水质条件,从而通过微生物的新陈代谢使有机物无机化。加之微生物的生存条件温和,新陈代谢时不需要高温高压,它是不需要投加催化剂的.生物法具有废水处理量大、处理范围广、运行费用相对较低,所要投入的人力,物力比其他方法要少
8、的多。在污水生物处理的人工生态系统中,物质的迁移转化效率之高是任何天然的或农业生态系统所不能比拟的。 4.污水处理中重要的微生物种群41 丝状细菌丝状细菌(Filamentous bacteria)能显著影响絮状活性污泥的沉降性(污泥膨胀)或引起生物量变化和泡沫形成(污泥发泡),从而严重影响活性污泥的处理效率传统上,丝状细菌是通过光学显微镜学进行分析鉴定的,如革兰氏和Neisser染色反应、典型的形态学特征等但应用fullcycle rRNA技术发现,传统形态学鉴定方法不能发现污水厂活性污泥中的许多丝状细菌 。系统发生树部分提供了丝状菌的系统发生亲缘关系,但有些丝状类型如Eikelboom 1
9、863或Nostocoidalimicola等则是放置在完全无关的类群中现在利用rRNA目标寡聚核苷酸探针能迅速地鉴定大多数丝状菌,证明在活性污泥中有些丝状菌呈现多态性现象Kanagawa等(2000)从活性污泥中分离出15种丝状菌,根据形态被分类为Eikelboom 21 N,利用16S rDNA序列分析表明都同变形杆菌亚纲的Thiothrix丝状菌形成单系群(monophyletic group).Thiothrix丝状菌在污水中通常表现出生理多能性,在异养、兼性营养和化能自养情况下,它们都能同标记的乙酸盐或碳酸氢盐结合。在厌氧状况下(无论有无硝酸盐),Thiothrix丝状菌都很活跃,它
10、通过吸收硫代硫酸盐和乙酸盐来形成胞内硫粒。利用丝状菌的FISH探针,Mircothrix parvicella被发现有特殊的脂消费,在厌氧情况下专门吸收长链脂肪酸(而不是短链脂肪酸和葡萄糖),随后当硝酸盐或氧可用作电子受体时它们则使用贮存完成生长不过,在厌氧情况下,M.parvicella不能吸收磷,不适合那些有除磷要求的生物反应器利用FISH技术对丝状菌进行系统分类发现,大多数未描述的丝状菌属于绿色非硫细菌(Chloroflexi),也可能是污水生物处理系统中丰度最高的丝状菌。Liao等(2004)发展一种定量FISH,对实验室和污水厂反应器中的丝状菌进行了研究,以增加Sphaerotilu
11、s natans的方式来刺激污泥膨胀,结果发现是Eikelboom 1851菌丛(而不是试验的Snatans菌)同活性污泥容积指数(volume index)极度相关,其可延伸的菌丝长度约为610。la,mmL。42 生物除磷的重要细菌生物除磷可以在EBPR的微生物途径中由完成,该过程通过循环活性污泥进行交替的厌氧、需氧为特征。基于微生物的纯培养技术,变形杆菌纲亚纲的不动杆菌属(Acinetobacter)长期被认为是唯一的PAO(Polyphosphateaccumulating organism)但实际上,虽然不动杆菌能积累多聚磷酸盐,却没有PAO的典型代谢方式Wanger等(1994)用
12、rRNA目的探针测试后认为,主要的PAO应该为口亚纲中的Rhoclocyclus群,其次为 亚纲中的Planctomycete群及屈挠杆菌属(Flexibacter)、CFB群(CytophagaFlavobacteriumBacteroides)等利用萤光抗体染色、呼吸醌检测和属特异探针的FISH等非培养方法,证明在EBPR系统中,由于培养偏差显然高估了不动杆菌的相对丰度,表明其对EBPR系统实际上不是最重要的,而另外一些分离出的细菌才是PAO的候选者。不过,有7个Acinembacter新种从活性污泥中分离到,可望进一步阐释该属在脱磷中扮演的角色和意义。积磷小月菌(Microlunatus
13、 phosphovorus)是一个高G+C含量的革兰氏阳性菌,被认为是专性好氧菌,可以通过EMP途径发酵葡萄糖为乙酸,而不能够在厌氧情况下生长有明显吸收葡萄糖、分泌乙酸的转化,导致胞内乙酸积累;产生的乙酸在随后的好氧阶段消耗掉phosphovorus表现出卓越的吸收和释放磷的能力,磷释放率和吸收率可分别高达334 mmol gcellh和156 mmol gcellh,比Lampropedia spp和Acinetobacterspp要高1个数量级,特异探针证明其在EBPR工厂里可占总细菌的27。俊片菌属(Lampropedia)也拥有聚磷菌的基本代谢特征,但比EBPR模型预言的吸收乙酸盐释放
14、磷酸盐的比率要低很多那些被建议名为“Candidatus Accumulibacter phosphates”已被证实显著存在于EBPR系统中Saunders等(2003) 在对6个运行污水厂进行了检测后认为,很可能“无关紧要”的“CandidatusAccumulibacter phosphates”正是重要的PAO另外还有显微镜原位观察显示,酵母菌很可能涉及在生物除磷中,许多“聚磷菌”很可能是酵母菌的孢子,但其作用机理显然还需要进一步探讨43 硝化细菌氮循环是高度依赖微生物活性和转化的一个过程这类微生物在污水处理、农业等领域具有极其重要的作用,因此成为近年来世界研究的热点,变形杆菌的亚纲几
15、乎已经成为微生物生态学的模式系统 Kindaichi等(2004)对自养硝化生物膜进行了FISH分析表明,膜上有50属于硝化细菌,其余50为异养细菌,分布为变形杆菌亚纲23 ,亚纲13 ,绿色非硫细菌9 ,CFB群2,未定类群3该结果表明,硝化细菌通过可溶性产物的产生支持了异养菌,异养菌也从代谢多样性等方面确保了生物膜的生态稳定性 从培养角度来说,硝化细菌生长极慢;由于硝化细菌的分布同pH、温度等敏感,所以污水厂的硝化作用常有崩溃的情况发生431 氨氧化茵基于16S rDNA序列分析,已经分离和描述过的氨氧化细菌都分属于变形杆菌纲的2个单系群中Ni-trosococcusoceanus和Nha
16、lophilus属于Proteobacteria的亚纲,包括亚硝化单胞菌属(Nitrosomonas)、亚硝化螺菌属(Nitrosospira)、亚硝化弧菌属(Nitrosovibrio)和亚硝化叶菌属(Nitrosolobus),后3个属关系密切;而Nitrosococcus mobilis(实际是Nitrosomonas的一个成员)则在亚纲组成紧密相关的集合432 亚硝酸氧化茵基于超微特性,已培养出的亚硝酸氧化菌(Nitriteoxidizing bacteria,NOB)被分为4个已知属,硝化杆菌属(Nitrobacter),硝化刺菌属(Nitrospina),硝化球菌属(Nitroco
17、ccus)和硝化螺菌属(Nhrospira)16S rDNA序列比较分析表明,硝化杆菌属及其3个种都属于变形杆菌的一亚纲;Nitrospina和Nitrococcus各有一个种,分属于变形杆菌的和一亚纲;Nitrospira属包含有moscoviensis和rrtarin在传统上,Nitrobacter一直被认为是最重要的亚硝酸盐氧化菌然而,在硝化污水厂内用目的探针的FISH法和定量斑点杂交(Quantitative dot blot)等发现,检测不到Nitrobacter或者数目很低,因此凸现了非Nitrobacter的NOB在硝化过程中的重要性Egli等(2003)用不同污泥接种反应器,利
18、用定量FISH和RFLP(Restriction fragment length polymorphism)方法对稳定的硝化作用反应器进行检测,发现有活性的都属于Nitrospira属 J以Nitrospira序列发展的特定16S rRNA探针,对活性污泥进行FISH查后表明,未培养的类硝化螺菌(Nitrospiralike)以显著性数目(总菌数的9)存在,其对亚硝酸盐氧化的重要性已由反应器富集研究所证实Nhrospira能固定CO:,也能利用丙酮酸混合营养生长,而不利用乙酸盐、丁酸盐和丙酸盐。44 反硝化细菌反硝化细菌(Denitrifying bacteria)的大多数鉴定和计数都是依赖培
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微生物 污水处理 中的 应用
限制150内