《手机充电器电路图讲解.doc》由会员分享,可在线阅读,更多相关《手机充电器电路图讲解.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流手机充电器电路图讲解.精品文档.手机充电器电路图讲解时间:2012-12-18 来源: 作者:分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82K电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003)
2、,耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510K为启动电阻,给开关管提供启动用的基极电流。13003下方的10电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13
3、003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从
4、而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。而下方的1K电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。没找到二极管RF93的资料,估计是一个快速回复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。这里可以用常见的1N5816、1N5817等肖特基二极管代替。同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流。 霓虹灯灯管要求很高的
5、启动电压,需用一个漏磁变压器作启动和整流用。漏磁变压器的空载二次电压不小于15kV、容量为450VA、电流为24mA、短路电流为30mA。这样的漏磁变压器能点亮管径为12mm、展开长度约为12m的灯管。霓虹灯控制电路:电阻的类别和符号 电阻器按其结构可分为固定电阻器、半可调电阻器和电位器三大类。在电路中,固定电阻器、半可调电阻器的符号是R,电位器的符号是RP。为了区别不同种类的电阻,常用几个拉丁字母表示电阻类别,如图1所示。第一个字母R表示电阻,第二个字母表示导体材料,第三个字母表示形状性能。上图是碳膜电阻,下图是精密金属膜电阻。表1列出电阻的类别和符号。表2是常用电阻的技术特性。图1表1 电
6、阻的类别和符号顺序类别名称简称符号第一个字母主称电阻器电位器阻位RW第二个字母导体材料碳膜金属膜金属氧化膜线绕碳金氧线TJYX第三个字母形状性能等大小精密测量高功率小精量高XJLG表2 常用电阻的技术特性电阻类别额定功率(W)标称阻值范围(Ω)温度系数(1/)噪声电势(uV/V)运用频率RT型碳膜电阻0.050.1250.250.51.2101001035.15101035.19101035.121065.15.1106-(620)10-41510兆赫以下RU型硅碳膜电阻0.125、0.250.51.25.15101031011061010106(712)10-41510兆赫以下R
7、J型金属膜电阻0.1250.250.51.230510103301106305.11063010106(610)10-41410兆赫以下RXYC型线绕电阻2.51005.156106低频WTH型碳膜电位器0.524704.7106510510几百千赫以下WX型线绕电位器131020103低频定电阻器在电路图中的符号用长方块表示电阻体,两边短线分别表示电阻器的两根引出线。不论是碳质电阻器或是金属膜电阻器,凡是阻值固定不变的电阻器,都用这个符号来表示,如图所示。固定电阻器用文字符号常用字母R”表示。可变电阻器在电路图中的符号仍用长方块来代表电阻体,用箭头来形象地表示可以移动的滑动触点。因为可变电阻
8、器是只有两个接线头的变阻元器件,所以只用一根引线和一个带箭头的折线来表示,或用一个带有箭头的固定电阻器符号来表示,如图(b)、(c)、(d)所示。电位器符号两边的短线表示电阻体两端的引出焊片,带箭头的折线代表电阻体上的滑动触点,如图1-23 (e)所示。带有开关的电位器符号如图1-23(f)所示,其中左面部分表示开关,中间虚线表示了开关与电位器是由同一转轴控制的。通常音量控制采用带开关电位器,所以一般电路图中虚线往往不画出来。电位器的文字符号常用字母“RP,来表示。常用保险电阻器的符号如图所示。电阻的标识 2009-02-23 12:52:35| 分类: 电子元件 | 标签: |字号大中小 订
9、阅 在使用电阻器时,需要了解它的主要参数。对电阻器需知道其标称阻值、功率、允许偏差。电阻器的标称值和允许偏差一般都标 在电阻体上,而在电路图上通常只标出标称值。电阻的标识方法分为下列四种: 1. 直标法就是将电阻器的类别、标称阻值、允许偏差及额定功率等直接标注在电阻器的外表面上. (a)表示标称阻值为20k、允许偏差为0.1%、额定功率为2W的线绕电阻器;图1(b)表示标称阻值为2k、额定功率为4W的线绕电阻器;图1(c)表示标称阻值为1.2k、允许偏差为10%、额定功率为0.5W的碳膜电阻器。 直标法一般用数字和单位符号直接地标称电阻值并标志在电阻器上。还有的用数字和单位符号组合在一起表示,
10、文字符号前面的数字表示整数阻值,文字符号后面的数宇表示小数点后面的小数阻值。例如电阻器上标志符号 R33表示0.33;6k8表示6.8k。文字符号组合标志电阻器标称阻值实例列入表2中以供参考。 2. 文字符号法:文字符号法是将电阻器的标称值和允许偏差值用数字和文字符号法按一定的规律组合标志在电阻体上。电阻器的标称值的单位标志符号见表 1 ,允许偏差见表 2 。 表 1电阻值 文字符号 单位及进位关系 名称 R (100) 欧姆 K K(103) 千欧 M M(106) 兆欧 G G(109) 吉欧 T T(1012) 太欧 表 2 表示允许误差的文字符号文字符号 D F G J K M允许偏差
11、 0.5% 1% 2% 5% 10% 20% 注:未标注按20%大多数电阻器的允许偏差值 J 、 K 、 M 三类,未标注按20% .例如: 6R2J 表示该电阻标称值为 6.2 ,允许偏差为 5% ;3K6K 表示电阻值为 3.6K ,允许偏差为 10% ; 1M5 则表示电阻值为 1.5M ,允许偏差为 20% 。3. 色标法:普通的电阻器用四色环表示,精密电阻用五色环表示。紧靠电阻体一端头的色环为第一环,露着电阻体本色教多的另一端头为末环。注意:金、银在第四环出现时,它们代表误差,金代表 5 ,银代表 10 ;而在第三环出现时,金代表 0.1 ,银代表 0.01 。请看下例。 a、“四色
12、环”读数规则:第一,二环表示两位有效数字,第三环表示数字后面添加“ 0 ”的个数。红紫橙 金273个0 5阻值:27后面添加“3个0”即 27000 欧,误差 5%红紫金 金270.1 5阻值: 27 小数点向前移1位,即 2.7 欧姆 ,误差 5%红红棕 金221个0 5阻值:22后面添加1个0即220欧姆, 误差 5%红红黑 金220个0 5阻值为 22 欧。第三环“黑色”表示“ 0 个零 ”,也就是表示数字后面 不添加 0 .实际上,第三环用数学形式表达就是 10 的 N次方的倍率,前面的情况分别可写作: 2710327000 22101220 2210022b、“五色环”读数规则:当电
13、阻为五环时,最後一环与前面四环距离较大。第一、二、三环表示三位数字,第四环表示数字后面“ 0 ”的个数,第五环表示精度。红黑黑橙棕2003个01阻值: 200000 欧姆 200K 误差 1 绿棕黑银棕2100.011阻值: 510 0.015.1误差 1 4. 数码标志法:在产品和电路图上用三为数字来表示元件的标称值的方法称之为数码标志法。常见于贴片电阻或可调电阻上。在三位数码中,从左至右第一、二位数表示电阻标称值的第一、二位有效数字,第三位数为倍率 10n(10 的“n倍”即前面两位数后加“ 0 ”的个数) , 单位为 。当n=9时为特例,表示10-1 0-10欧带小数点电阻值表示为XRX
14、 RXX 2R2=2.2 标志为 R47 的电阻器阻值为 4.7 标识为 222 的电阻器,其阻值为 2200 既 2.2 K ;表识为 105 的电阻器为 1 M 。需要注意的是要将这种标志法与传统的方法区别开来:如标志为 220 的电阻器其电阻为 22 ,只有标志为 221 的电阻器其阻值才为 220 。标志为 0 或 000 的电阻器,实际是跳线,阻值为 0 。在一些微调电阻器阻值的标志法除了用三位数字外还有用两位数字的。如标志为 53 表示 5 , 14 和 54 分别表示 10 和 50 。一些精密贴片电阻器也有用四位数字表示法,如 1005 表示数字电位器的特点数字电位器的特点是:
15、寿命长(因无机械触点)、工作可靠、性能稳定、耐振动、体积小,能和数字电路或单片机灵活地结合在一起。数字电位器工作原理由于数字电位器可代替机械式电位器,所以二者在原理上有相似之处。数字电位器属于集成化的三端可变电阻器件其等效电路,如图1所示。当数字电位器用作分压器时,其高端、低端、滑动端分别用VH、VL、VW表示;而用作可调电阻器时,分别用RH、RL和RW表示。图2所示为数字电位器的内部简化电路,将n个阻值相同的电阻串联,每只电阻的两端经过一个由MOS管构成的模拟开关相连,作为数字电位器的抽头。这种模拟开关等效于单刀单掷开关,且在数字信号的控制下每次只能有一个模拟开关闭合,从而将串联电阻的每一个
16、节点连接到滑动端。数字电位器的数字控制部分包括加减计数器、译码电路、保存和恢复控制电路和不挥发存储器等4个数字电路模块。利用串入、并出的加减计数器在输入脉冲和控制信号的控制下可实现加减计数,计数器把累计的数据直接提供给译码电路控制开关阵列,同时也将数据传送给内部存储器保存。当外部计数脉冲信号停止或片选信号无效后,译码电路的输出端只有一个有效,于是只选择一个MOS管导通。数字控制部分的存储器是一种掉电不挥发存储器,当电路掉电后再次上电时,数字电位器中仍保存着原有的控制数据,其中间抽头到两端点之间的电阻值仍是上一次的调整结果。因此,数字电位器和机械式电位器的使用效果基本相同。但是由于开关的工作采用
17、“先连接后断开”的方式,所以在输入计数有效期间,数字电位器的电阻值和期望值可能会有一定的差别,只有在调整结束后才能达到期望值。从图2可以看出,数字电位器和机械式电位器有2个重要区别:1)调整过程中,数字电位器的电阻值不是连续变化的,而是在调整结束后才具有所希望的输出。这是因为数字电位器采用MOS管作为开关电路,并且采用“先开后关”的控制方法:2)数字电位器无法实现电阻的连续调整,而只能按数字电位器中电阻网络上的最小电阻值进行调整。数字电位器和数模转换器的区别1 引言利用数字输入控制微调模拟输出有两种选择:数字电位器和数/模转换器(DAC),两者均采用数字输入控制模拟输出。通过数字电位器可以调整
18、模拟电压;通过DAC既可以调整电流,也可以调整电压。电位器有三个模拟连接端:高端、抽头端(或模拟输出)和低端(见图1a)。DAC具有队应的三个端点:高端对应于正基准电压,抽头端对应于DAC输出,低端则可能对应于接地端或负基准电压端(见图1b)。DAC和数字电位器存在一些明显区别,最明显的差异是DAC通常包括一个输出放大器/缓冲器,而数字电位器却没有。大部分数字电位器需要借助外部缓冲器驱动低阻负载。有些应用中,用户可以轻易地在DAC和数字电位器之间做出选择;而有些应用中两者都能满足需求。本文对DAC和数字电位器进行了比较,便于用户做出最恰当的选择。2 数/模转换器DAC通常采用电阻串结构或R-2
19、R阶梯架构,使用电阻串时,DAC输入控制着一组开关,这些开关通过匹配的一系列电阻对基准电压分压。对于R-2R阶梯架构,通过切换每个电阻对正基准电压进行分压,从而产生受控电流。该电流送入输出放大器,电压输出DAC将此电流转换成电压输出,电流输出DAC则将R-2R阶梯电流通过放大器缓冲后输出。如果选择DAC,还要考虑具体指标,如串口/并口、分辨率、输入通道数、电流/电压输出、成本等。对于注重速度的系统,可以选用并行接口;如果注重成本和尺寸,则可选用3线或2线串口,这种器件引脚数较少,可显着降低成本,而且,有些3线接口能达到26 MHz的通信速率,2线接口能够达到3.4 MHz的速率。DAC的另一个
20、指标是分辨率,16位或18位DAC可以提供微伏级控制。例如,一个18位、2.5V基准的DAC,每个LSB对应于9.54V,高分辨率对于工业控制(如机器人、发动机)产品极为重要。目前,数字电位器能够提供的最高分辨率是10位或1 024抽头。数/模转换器的另一个优势是能够在单芯片内集成多路转换器,例如,MAX5733内置32路DAC,每路都能提供16位的分辨率。当前的数字电位器最多只能提供6个通道,如DS3930。DAC能够源出或吸入电流,为设计者提供更大的灵活性。例如,MAX5550 10位DAC通过内部放大器、P沟道MOSFET和上拉电阻能够提供高达30mA的输出驱动。而MAX5547 10位
21、DAC结合放大器、N沟道MOSFET和下拉电阻可以提供3.6 mA的吸电流。除电流输出外,一些DAC还可以和外部放大器连接提供额外的输出控制。因为数/模转换器通常内置放大器,成本要高于数字电位器。但随着新型DAC尺寸的缩小,成本差异也越来越小。3 数字电位器前面已谈到数字电位器可以通过数字输入控制电阻。图1a中的3端数字电位器实际上是一个固定端到端电阻的可调电阻分压器。通过将电位器中心抽头和高端或低端相连,或使高端或低端浮空,数字电位器能配置成2端可变电阻。和数/模转换器不同,数字电位器能将H端接最高电压或最低电压端。选用数字电位器时,用户也需考虑具体的指标:线性或对数调节、抽头数、抽头级数、
22、非易失存储器、成本等。控制接口有递增/递减、按钮、SPI和I2C。和数/模转换器一样,数字电位器通过串口通信,包括I2C和SPI。此外,数字电位器还提供了2线的递增、递减接口控制。通常,DAC和数字电位器的显着区别在于数/模转换器内部带有输出放大器。通过该输出放大器可以驱动低阻负载。4 DAC/电位器的选择很多应用场合,用户可以轻易地在DAC和电位器之间做出选择。要求高分辨率的电机控制、传感器或机器人系统,需要选用DAC。另外,高速应用中,例如基站、仪表等对速度、分辨率要求较高,甚至需要并行接口的DAC。电位器的线性特性便于实现放大器反馈网络。相对于数/模转换器,对数电位器更适合音量调节。但在
23、当前的许多应用中,DAC和数字电位器之间选择的界限比较模糊,图2中的DAC和数字电位器都可用于控制MAXl553 LED驱动器。MAXll53亮度(BRT)输入的直流电压和检流电阻决定了LED的电流。区分数字电位器的性能介绍数字电位器,或digipot,方便了模拟电路的电阻、电压以及电流的数字控制和调整。数字电位器通常用于电源校准、音量控制、亮度控制、增益调节以及光模块的偏置/调制电流调节。数字电位器除基本作用外,还提供许多其它作用,以增强系统性能,简化设计。这些作用包括:不同类型的非易失存储器、过零检测、去抖动按键接口、温度补偿和写保护。这些作用针对不同的应用而设计。基本的数字电位器设计电位
24、器实际上是一个三端元件(见图1a)。低端VL在内部连接至器件地或作为引脚输出,便于设计。三端数字电位器的结构实质上是一个具有固定端到端电阻的可调节分压电阻。可变电阻是双端电位器,抽头和一个电阻串端点的阻值可变(参考图1b)。调节可变电阻数字电位器的抽头位置,可以改变数字电位器的端到端电阻。图1. (a) 三端数字电位器的结构实质上是一个具有固定端到端电阻的可调节分压电阻。(b) 可变电阻为双端数字电位器,抽头内部连接到电位器的一端。简单地说,数字电位器是由数字输入控制的模拟输出,类似于数/模转换器(DAC)的定义。和DAC不同的是,DAC提供经过缓冲的输出,而绝大多数数字电位器在没有外部缓冲器
25、的情况下不能驱动低阻负载。对于数字电位器,最大抽头电流范围为几百微安到毫安级。当数字电位器的抽头连接到低阻负载时,无论是可变电阻还是真正的数字电位器,一定要确保在最糟糕的工作条件下抽头电流处于可接受的IWIPER范围。可变电阻的最差负载发生在VW接近VH时。在这个点上,电路中除抽头电阻以外可能没有其它电阻限制电流。但是,有些应用中可能要求很大的抽头电流,这种情况下,需要重点考虑电位器抽头的压降,这个压降限制了数字电位器的输出动态范围。根据应用需求改进设计数字电位器的应用范围很广,一些设计中可能需要外加器件,以满足对数字电位器的“精密调节”要求。例如,数字电位器的端到端电阻范围为10k和200k
26、,而控制LED亮度时常常需要小电阻。解决这个问题的方案是DS3906,该芯片和105的固定电阻并联使用,可提供70至102的等效电阻。这种配置下可以获得0.5的步进调节,精确调节LED亮度。另一个解决方案是多通道数字电位器,如MAX5477或MAX5487,可以多个通道相互组合得到不同的调节电阻步长,达到数字电位器的分辨率要求。有些情况可能需要更特殊的数字电位器作用,对于需要温度补偿的电压或电流调节,如光模块的光驱动器偏置,可以选择基于查找表的可变电阻。一些数字电位器集成了EEPROM (用于存储温度变化时的校准数据)和内部温度传感器(用于测量环境温度)。数字电位器按照测量温度在查找表中检索到
27、对应的数值,调整可变电阻。基于温度查找表的数字电位器通常用来修正电路元件的非线性温度响应,如激光二极管或光电二极管;也可以根据应用需要,有意建立一个非线性电阻的温度响应。非易失存储器是数字电位器中引入的比较常见的低成本作用电路,标准的基于EEPROM的非易失(NV)数字电位器在上电复位(POR)期间进入一个已知状态。EEPROM能够确保50,000次的重复写次数,相对于机械电位器,大大提高了系统的可靠性。一次性编程(OTP)数字电位器,如MAX5427/MAX5428/MAX5429,采用熔丝设置,永久保存默认的抽头位置。和基于EEPROM的数字电位器一样,POR后OTP数字电位器初始化到已知
28、状态。然而,OTP数字电位器的POR状态一旦编程后不能重写。所以,OTP很适合工厂编程或产品校准。熔丝永久性地设置OTP数字电位器的POR抽头位置,无需锁定抽头位置。有些OTP数字电位器的抽头在熔丝编程后可以调节;有些OTP数字电位器的抽头位置则被永久性地设置,得到一个精确的、经过校准的电阻分压器。一些数字电位器提供锁定寄存器,或数字控制输入,使数字电位器接口呈高阻态,避免不恰当的抽头调整。EEPROM数字电位器的写保护作用还降低了功耗。数字电位器可以在电源或其它需要工厂校准的系统中完成电压和电流校准。和机械电位器或分离电阻等费时且不精确的手动校准相比,数字电位器有助于提高制造商的生产能力,改
29、善校准精度和重复性指标。另外,数控电位器便于远程调试和重新校准。需要校准多个电压和/或电流时,使用DS3904/DS3905等三路NV数字电位器非常理想(图2)。这种情况下,一个小体积数字电位器可以代替三个机械电位器。用数字电位器替代机械电位器还有助于提高电路布局的灵活性,因为数字电位器不需要在安装或维护期间进行机械调整。校准是OTP或EEPROM写保护作用的典型应用,其中EEPROM写保护更有利于设计。图2. DS3904/DS3905三路非易失数字电位器,可理想用于需要校准多路电压/电流的系统。这款小尺寸IC可以替代3个机械电位器。虽然不是数字电位器,DS4303等具有简单的单线数字控制接
30、口的采样/保持电压基准也能用于产品校准(图3)。紧凑的设计非常符合校准的需求,电压基准输出在被控制信号锁定之前取决于输入电压,输出锁定后,除非重新编程或掉电,否则输出将不再发生变化,和输入电压无关。最新产品把锁定后的输出电压存储在EEPROM中,电源上电后可重新恢复。图3. 非易失采样/保持电压基准DS4303,虽然不是数字电位器,但可理想用于产品校准。校准时,在被控制信号(ADJ)锁定之前,DS4303输出(VOUT)取决于输入电压(VIN)。改进后的按键接口是传统接口(如SPI?、I?C、增/减和旋转控制)的补充。带有缓冲输出的数字电位器MAX5486使用了这种接口。这种经过去抖的按键接口
31、基于按键按下的时间,用变化的速度控制抽头动作。按键接口不需要微控制器,降低了系统设计的复杂度。去抖动按键接口对于音量控制尤其重要。针对音频应用设计的数字电位器通常提供过零检测电路,过零检测可以抑制抽头从一个位置跳变到另一个位置时的可闻噪声。该作用使能后,过零检测电路将抽头动作推迟到VL接近VH时。很多过零检测电路还提供最大抽头变化的延迟,方便直流调节及其它特定电路。结论简单的易失性数字电位器在系统设计中仍然实用,而针对特殊应用设计的数字电位器和可变电阻提供了更多的作用。目前,很多设计者希望替换机械电位器,提高系统的可靠性和在整个工作温度范围内的性能,省去系统微处理器,或抑制咔嗒/噼噗声。对于这
32、些需求,数字电位器充分展现它的优势,数字电位器的应用越来越普遍。利用数字电位器实现数控低通滤波器数字电位器是一种应用普遍的器件,以下介绍如何使用数字电位器构建一个可调带宽的低通滤波器。2 一种简单的低通滤波器由DS3903构成的音频低通滤波器如图1所示。该电路采用单电源供电,电源电压范围为2755 V。包含一级前置衰减,50 V供电时可处理50 VP-P(177VRMS)输入。为了产生一个双极点(极点在同一频点)低通滤波器(每10倍频程衰减12 dB),电容C3必须是C2的2倍以上,可变电阻POTO和POTl设置相同值,则截止频率(fC)计算如下:其中,RPOT是可变电阻POT0和POT2设置
33、对应的电阻值。该电路的输入部分(Cl、U1一POTl、U2A、Rl和R2)是音量控制电路,还可将音频信号的直流偏置到VCC2,使信号在未嵌位的条件下通过数字电位器和运放器,在任何供电电源下,电路都能够处理最大信号摆幅。因此,该设计在27 V至50 V下工作性能良好。输出直流电平保持在VCC/2,除非在正常输出以外工作,电平将偏移到不同工作点。对于已限定工作范围的应用,可以去掉输入级电路,采用直接耦合的方式连接到滤波器。去掉输入电路后,输出信号只是经截止频率为fC的双极点滤波器滤波后的信号,而输入信号的直流分量则直接旁路到输出端。通过更改电容或选择不同端到端电阻的数字电位器,该电路的截止频率可设
34、置为500 kHz。用于计算RPOT的数字电阻模型如图2所示,对于指定位置,相应的开关将闭合而其他位置的开关则开路。电位器每递增一个单元位置,电阻将相应增加LSB(对DS3903,10 k128=78),最高抽头位置除外,最高抽头位置为电位器电阻的并联组合,则引起非线性。通过下式计算RPOT:其中:RLSB是端到端电阻除以抽头数;RW是滑动端、电阻;n是电位器的编程位置;a是数字电位器的总抽头数。图3所示给出了DS3903 10 k电位器的RPOT电阻值和抽头位置之间的关系图,假定端到端电阻为10 k,滑动端电阻最小值是500。这两个参数都会对滤波特性产生显着影响,但主要影响的是截止频率的最小
35、值和最大值,实际截止频率可以在其最小值和最大值之间调节,选择适当的电容值即可将截止频率设置在可调范围内所要求的频点。3 数字电位器设计考虑滤波电路选择数字电位器时需要考虑以下几个因素。使用数字电位器的最大限制是电位器端点的电压,通常该电压必须保持在VCC和GND之间,以避免ESD结构内部的二极管将音频信号嵌位。当VCC在规定的范围(2755 V)内时,DS3903的ESD结构允许输入信号处于6 V和GND之间,这一特性对于要求输入信号大于VCC的应用非常灵活。但是,在图l所示电路中并未处理60 VP-P信号,因为运放电源低于6 V时将会嵌位信号。如果运算放大器能够采用更高的电压供电,即可使用D
36、S3903的大信号处理作用。电位器抽头的变化形式(线性或对数)决定了电路截止频率的线性调节或对数调节形式。对于图l所示音频范围的滤波电路,为保证在40800 Hz之间提供尽可能多的截止频率设置,采用线性电位器比较合适。电位器的分辨率(如128或256抽头)决定了截止频率的调节精度,抽头数越多,截止频率的调节精度也越高。对于音频应用,不太可能使用64或128抽头以上的电位器来设置低通滤波器的截止频率。对于宽带应用则要求更多的电位器抽头。一些数字电位器采用非易失存储,能够在没有电源供电时保持抽头位置。这种特性可用于保存校准后的滤波器位置,而在上电时不再调整滤波器设置。易失电位器总是从一个预置位置启
37、动,电路在被修改之前将一直保持默认位置。数字电位器的端到端电阻和滑动电阻具有较宽的公差,图l所示电路中的两个电阻(POTO和POT2)则保持相等,因为这两个电阻制作在同一硅片上。电位器的实际阻值差别较大,通常端到端电阻的变化范围是20,但它们的相对值基本保持稳定。另外,数字电位器内部也具有一定的寄生电容,这会限制最大截止频率。截止频率大于500 kHz时,不推荐使用10 k的数字电位器,也不建议将50 k数字电位器用于100 kHz以上的设计或将100 k的数字电位器用于50 kHz以上的设计。对于音频应用,所选择的电位器能够提供足够的带宽,但对于宽带应用,必须慎重考虑这一因素。4 运算放大器的选择该电路对于运算放大器的主要设计考虑是最小稳定增益和输入、输出电压摆幅。输入级接收信号并将其偏置在VCC2直流电平,滤波器本身是单位增益放大器。为保证可靠工作放大器必须是单位增益稳定。另外,还需选择具有满摆幅输入、输出的运算放大器,以处理接近电路供电电压的输入信号。5 结语数字电位器可用于构建数控低通滤波器本文中的双极点滤波器能够在音频应用中提供良好性能,选择不同的电容、电位器值可以调整滤波器的截止频率,最高可达500 kHz。
限制150内