暨大复试2010年分子生物学硕士生复习题.doc
《暨大复试2010年分子生物学硕士生复习题.doc》由会员分享,可在线阅读,更多相关《暨大复试2010年分子生物学硕士生复习题.doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流暨大复试2010年分子生物学硕士生复习题.精品文档.2010年分子生物学硕士生复习题1.阐述基因概念和你对基因定义的了解。从遗传学的角度看,基因是生物的遗传物质,是遗传的基本单位突变单位、重组单位和功能单位;从分子生物学的角度看,基因是负载特定遗传信息的DNA分子片段,在一定条件下能够表达这种遗传信息,变成特定的生理功能。有的生物基因为RNA。20世纪,基因的概念随着遗传学的发展而不断地变换形式,扩大内涵。1)孟德尔“遗传因子”孟德尔指出,生物每一个性状都是通过遗传因子来传递的,遗传因子是一些独立的遗传单位。这样把可观察的遗传性状和控制它的内
2、在的遗传因子区分开来了,遗传因子作为基因的雏形名词诞生了。2)基因位于染色体上的遗传功能单位1909年丹麦遗传学家约翰逊在提出“基因”概念,以此来替代孟德尔假定的“遗传因子”。摩尔根首次完成了当时最新的基因概念的描述,即基因以直线形式排列,它决定着一个特定的性状,而且能发生突变并随着染色体同源节段的互换而交换,它不仅是决定性状的功能单位,而且是一个突变单位和交换单位。3)顺反子一个基因一条多肽1957年法国遗传学家本滋尔以T4噬菌体作为研究材料分析了基因内部的精细结构,提出了顺反子学说。这个学说打破了过去关于基因是突变、重组、决定遗传性状的“三位一体”概念及基因是最小的不可分割的遗传单位的观点
3、,从而认为基因为DNA分子上一段核苷酸顺序,负责着遗传信息传递,一个基因内部仍可划分若干个起作用的小单位,即可区分成顺反子、突变子和重组子。一个作用子通常决定一种多肽链合成,一个基因包含一个或几个作用子。突变子指基因内突变的最小单位,而重组子为最小的重组合单位,只包含一对核苷酸。4)操纵子遗传信息传递和表达调控的统一体 1961年法国雅各布和莫诺提出大肠杆菌乳糖操纵子模型,又大大扩大了人们关于基因功能的视野。他们发现了有些基因不起合成蛋白质模板作用,只起调节或操纵作用。从此根据基因功能把基因分为结构基因、调节基因和操纵基因。5)内含子和外显子基因的结构是断裂的(断裂基因)人们在研究小鸡卵清蛋白
4、基因时发现其转录形成的mRNA只有该基因长度的1/4,其原因是基因中一些间隔序列的转录物在RNA成熟过程中被切除了。这些间隔序列叫内含子,基因中另一些被转录形成RNA的序列叫外显子。小鸡的卵清蛋白基因中至少含7个内含子。因而从基因转录效果看,基因由外显子和内含子构成。6)重叠基因1977年桑格(F. Sanger)领导的研究小组,根据大量研究事实绘制了共含有5375个核苷酸的X174噬菌体DNA碱基顺序图,第一次揭示了遗传的一种经济而巧妙的编排B和E基因核苷酸顺序分别与A和D基因的核苷酸顺序的一部分互相重叠。当然它们各有一套读码结构,且基因末端密码也有重叠现象。7)可动基因或转座元件基因并不全
5、是固定在染色体的一个位置上早在20世纪40年代美国遗传学家麦克林托克(B.McClintock)在玉米研究中发现“转座因子”,直至1980年夏皮罗(J.Shapiro)等人证实了可移位的遗传基因存在,说明某些基因具有游动性。为此,这位“玉米夫人”荣获了1983年度诺贝尔奖。8)染色体外基因这类基因存在于染色体外,它们的传递不符合孟德尔的分离和自由组合定律。如线粒体基因、叶绿体基因等。它们的基因编码细胞其专一的蛋白质并自我复制。2.举例解释蛋白质二级结构、超二级结构(MOTIF)、三级结构、DOMAIN和四级结构。蛋白质二级结构: 一条多肽链主链院子局部的空间排列。蛋白质主链的折叠产生由氢键维系
6、的有规则的构象。-螺旋:肽链的某段局部盘曲成螺旋形结构。-螺旋的特征是:般为右手螺旋;每螺旋包含3.6个氨基酸残基,每个残基跨距为0.15nm,螺旋上升1圈的距离(螺距)为3.60.15=0.54nm;螺旋之间通过肽键上的CO和-NH-间形成氢键以保持螺旋结构的稳定;影响-螺旋形成的主要因素是氨基酸侧链的大小、形状及所带电荷等性质。超二级结构:在蛋白质分子中特别是在球状蛋白质分子中经常可以看到由若干相邻的二级结构元件组合在一起,彼此相互作用,形成种类不多的、有规则的二级结构组合,在多种蛋白质中充当三级结构的构件,称为超二级结构。3种基本组合形式:,和。常是由2股平行或反向平行的右手螺旋相互缠绕
7、而成的左手卷曲螺旋。Domain结构域:多肽链在二级结构或超二级结构的基础上形成三级结构的局部折叠区,它是相对独立的紧密球状实体,称为结构域。最普遍的结构是 / 型结构,它含有一个由-螺旋包围着的平行或混合-回折的核。所有的糖酵解酶都是 / 型结构,许多其他的酶以及结合运输蛋白也是这种结构。在 / 型结构中,由环区域形成结合裂缝,这些区域虽对结构的稳定无作用,但通常参与结合和催化活性。MOTIF: 就是在许多转录因子的序列中,存在的负责与DNA结合的共同基序.这些基序通常都很短,仅含一小部分蛋白质结构,还通过与转录复合体的蛋白质之间的相互作用激活转录.如锌指基序,亮氨酸拉链等都是MOTIF。三
8、级结构:一条肽链的所有原子的空间排列。三级结构是在二级结构的基础上由疏水作用和侧链相互作用形成的。如肌红蛋白的三级结构有8段-螺旋区每个-螺旋区含724个氨基酸残基,有18个螺旋间区肽链拐角处为非螺旋区(亦称螺旋间区),包括N端有2个氨基酸残基,C端有5个氨基酸残基的非螺旋区内部存在一口袋形空穴,血红素居于此空穴中。四级结构:几个亚基在三级结构的基础上相互作用所形成的空间结构。如红细胞内的血红蛋白是由4个亚基聚合而成的,4个亚基两两相同,即含两个亚基和两个亚基。在一定条件下,这种蛋白质分子可以解聚成单个亚基,亚基在聚合或解聚时对某些蛋白质具有调节活性的作用。3. 解释大肠杆菌DNA复制的基本过
9、程。根据反应阶段和所需的不同酶类,DNA的复制可被分为三个阶段,即复制起始、延伸和终止。每个DNA复制的独立单元被称为复制子(replicon),主要包括复制起始位点(Origine of replication)和终止位点(terminus)。原核生物的整个染色体上一般只有一个复制起始位点。大肠杆菌DNA的复制需要有20种左右的酶和蛋白质因子参与,整个DNA复制机器被称之为DNA replicase system或replisome。Helicase,任何DNA在被复制前都必须解开双链,这个过程是由helicase来完成的,它可在ATP的作用下将DNA母链不断解开形成单链。Topoisome
10、rase,主要功能是消除DNA解链过程中所产生的扭曲力。DNA结合蛋白,使新解链的DNA保持稳定结构。Primases,为DNA复制提供RNA引物。DNA polymerases,合成新生DNA链,切除RNA引物。DNA Ligases,使新生DNA链上的缺口(3-OH, 5-p)生成磷酸二酯键。1. DNA复制的起始大肠杆菌中的复制起始位点是Ori C,全长245Bp,该序列在所有细菌复制起始位点中都是保守的。DNA复制起始中的主要步骤a. 大约20个左右的DnaA蛋白首先与OriC中的4个9碱基重复区相结合;b. 识别并使3个13碱基串联重复区DNA形成开环结构;c. DnaB蛋白在Dna
11、C的帮助下与未解链序列结合。每六个DnaB蛋白形成一组并与一条DNA母链结合,可在不同方向同时起始DNA的复制。当细胞中存在足够的SSB和DNA gyrase时,DnaB的解链效率非常高。整个DNA复制过程中,只有复制起始受细胞周期的严格调控。Once in each cell cycle。DNA甲基化与DNA复制起始密切相关。OriC中有11个GATC回文结构(一般说来,256bp才应有一个GATC重复)。DNA子链被合成后,母链立即被甲基化(称为hemimethylated)。此时,oriC与细胞原生质膜相结合。只有当oriC被从膜上释放出来,子链被Dam甲基化后,才能有效地与DnaA蛋白
12、结合,起始新一轮的DNA复制。复制起始可能还受ATP水解过程调控,因为DnaA只有与ATP相结合时才能与oriC区DNA相结合。2. DNA子链的延伸主要包括两个不同但相互有联系的事件,即前导链和滞后链的合成。由DNA helicase解开双螺旋,由拓朴异构酶消除DNA链上的扭曲力,SSB结合使DNA单链稳定。前导链的合成:由DnaG(primase)在复制起始位点附近合成一个10-60 nt的RNA引物,然后由polII把dNTP加到该引物上。 滞后链的合成:产生Okazaki fragments,消除RNA引物并由DNA pol I补上这一小段DNA序列,由DNA Ligase把两个片段相
13、连。3. DNA链的终止当子链延伸达到terminus region(ter,带有多个20bp序列)时,DNA复制就终止了。Ter有点像一个陷井(trap),使复制叉只能进入,不能出来。Ter的功能主要是由Ter-Tus复合物(ter utilization substance)来完成的。4.DNA聚合酶III各亚基的功能。DNA pol 是是多亚基组成的蛋白质,是合成DNA新链的主要复制酶,它在细胞中含量很少,但是催化效率高,异二聚体,全酶由、 10个亚基组成。其核心酶含有,和三个亚基。 亚基具有53方向合成DNA的催化活性,每秒可以合成8个核苷酸 亚基具有35外切酶的功能,起到校正的作用,
14、可提高聚合酶复制DNA的保真性。亚基常与亚基形成一个紧密的1:l复合物,协同发挥功能。 亚基使核心酶相互连接,组装核心酶的功能。 亚基:促使核心酶二聚化,与模板连接,具有ATP酶活性。 亚基的功能犹如夹子,两个亚基夹住DNA分子并可向前滑动,使聚合酶在完成复制前不再脱离DNA,从而提高了酶的持续合成能力。,和亚基组成复合体,其功能是帮助亚基夹住DNA,故称为夹子装置器。二聚体自己并不能组装到DNA 上 ,它是通过复合物与ATP协同作用催化ATP的水解而组装到DNA上的。5.阐明Rolling Circle Replication。滚环式复制(rolling circle replication
15、)是一种复制方式,复制叉沿环形模板复制一定次数,每个反应中新合成的链将前一反应中合成的链抛出,形成与环状模板链互补的一系列线性序列。这个过程。这个过程存在于某些噬菌体的营养复制过程和结合质粒的转移复制过程。滚环复制复制过程包括:(1)一个由噬菌体基因组编码的蛋白质A蛋白,在双链DNA正链的特定位点即复制原点产生缺口。(2)切除原点后,A蛋白质仍与它产生的5端连接,3端在DNA聚合酶的作用下延伸。(3)运用滚环机制,此刻的3OH端延伸为一个新链。新链围绕着环状负链模板延伸,直到到达原点并代替原点。(4)在这里A蛋白质与滚环和替代链尾部5端相连,又转回原点的生长点附近。(5)A蛋白又能识别原点并进
16、行切割,连接在新切割产生的末端,继续循环。(6)完成切割后,被替代的正链以环化状态释放。A蛋白与环化有关。正链产物3端和5端的连接由A蛋白完成,这是每个复制循环末尾A蛋白释放反应的一部分,接着又开始下一个循环。滚环复制的特点:(1)是单方向和不对称的半保留复制。(2)产物是单链,但是可通过互补链的合成转变成双链。(3)子代分子可能是连环的,即对应于每个单位基因组的相同DNA分子头尾相连。(4)连环DNA随后被切成于每一单位基因组相对应的小片断。(5)负链通常保持环状,因而保留有一套完整的遗传信息。6.阐明端粒结构与端粒酶的功能。端粒是真核细胞染色体末端的特殊结构,由端粒DNA和与端粒DNA特异
17、结合蛋白组成的核蛋白复合物,广泛存在于真核生物细胞中,具有特殊的功能。不同种类细胞的端粒重复单位不同,大多数长58bp,且多富含G,由这些重复单位组成的端粒,突出于其互补链1216个核苷酸内。人类端粒由5TTAGGG3的重复单位构成,长度在515kb范围。与端粒特异性结合的是端粒结合蛋白,迄今为止,只在少数生物中确定了端粒结合蛋白的结构及表达基因,然而端粒结构与功能的保守性表明,这些端粒结合蛋白的特性可能普遍适用于其他真核生物。人类细胞中发现了一种端粒结合蛋白,但人类染色体末端的DNA-蛋白复合体的结构还不清楚。正常的体细胞中,随细胞分裂次数的增加,端粒逐渐缩短端粒的长度与有丝分裂次数相关,所
18、以端粒又有细胞的“有丝分裂钟”之称。端粒酶是RNA与蛋白质组成的核糖核蛋白,是一种RNA依赖性DNA聚合酶。端粒酶的主要作用是维持端粒的长度。它能利用端粒3端单链为引物,自身的RNA为模板合成端粒重复序列添加到染色体末端,从而延长端粒的长度。人的生殖细胞、造血干细胞及T、B淋巴细胞中端粒酶有不同程度的表达,而在正常的体细胞中,端粒酶处于失活状态,因此体细胞随细胞分裂次数的增加端粒逐渐缩短。7. 阐述原核生物DNA修复机制(举3例)。切除修复,又称切补修复。最初在大肠杆菌中发现,包括一系列复杂的酶促DNA修补复制过程,主要有以下几个阶段:核酸内切酶识别DNA损伤部位,并在5端作一切口,再在外切酶
19、的作用下从5端到3端方向切除损伤;然后在 DNA多聚酶的作用下以损伤处相对应的互补链为模板合成新的 DNA单链片断以填补切除后留下的空隙;最后再在连接酶的作用下将新合成的单链片断与原有的单链以磷酸二酯链相接而完成修复过程。切除修复并不限于修复嘧啶二聚体,也可以修复化学物等引起的其他类型的损伤。从切除的对象来看,切除修复又可以分为碱基切除修复和核苷酸切除修复两类。碱基切除修复是先由糖基酶识别和去除损伤的碱基,在DNA单链上形成无嘌呤或无嘧啶的空位,这种空缺的碱基位置可以通过两个途径来填补:一是在插入酶的作用下以正确的碱基插入到空缺的位置上;二是在核酸内切酶的催化下在空位的5端切开DNA链,从而触
20、发上述一系列切除修复过程。对于各种不同类型的碱基损伤都有特异的糖基酶加以识别。不同的核酸内切酶对于不同类型损伤的识别也具有相对的特异性。切除修复功能广泛存在于原核生物和真核生物中,也是人类的主要修复方式,啮齿动物 (如仓鼠、小鼠)先天缺乏切除修复的功能。重组修复。重组修复从 DNA分子的半保留复制开始,在嘧啶二聚体相对应的位置上因复制不能正常进行而出现空缺,在大肠杆菌中已经证实这一DNA损伤诱导产生了重组蛋白,在重组蛋白的作用下母链和子链发生重组,重组后原来母链中的缺口可以通过DNA多聚酶的作用,以对侧子链为模板合成单链DNA片断来填补,最后也同样地在连接酶的作用下以磷酸二脂键连接新旧链而完成
21、修复过程。重组修复也是啮齿动物主要的修复方式。重组修复与切除修复的最大区别在于前者不须立即从亲代的DNA分子中去除受损伤的部分,却能保证DNA复制继续进行。原母链中遗留的损伤部分,可以在下一个细胞周期中再以切除修复方式去完成修复。SOS修复。是SOS反应的一种功能。SOS反应是DNA受到损伤或脱氧核糖核酸的复制受阻时的一种诱导反应。在大肠杆菌中,这种反应由recA-lexA系统调控。正常情况下处于不活动状态。当有诱导信号如 DNA损伤或复制受阻形成暴露的单链时,recA蛋白的蛋白酶活力就会被激活,分解阻遏物lexA蛋白,使SOS反应有关的基因去阻遏而先后开放,产生一系列细胞效应。引起SOS反应
22、的信号消除后,recA蛋白的蛋白酶活力丧失,lexA蛋白又重新发挥阻遏作用。8. 阐述DNA重组中相关的重要蛋白质。RceA蛋白具有链交换,ATP酶及蛋白酶活性。它能结合到ssDNA上,促使DNA分子间的链交换,我们将RecA催化单、双链DNA的反应分为三个阶段:1RecA结合到单链DNA上。2单链DNA与其互补物在双链上快速配对反应,产生异性双链连接3单链从双链中转移,取代了双链中的一条链。RecBCD是由recB,recC,recD三个基因编码的三个亚单位组成的酶,具有:核酸外切酶V活性;解旋酶;核酸内切酶;ATP酶;ssDNA外切酶活性。它能结合到双链的上并使双链解旋并分开,当遇到Chi
23、位点时,RecBCD就切开一条单链,并失去RecD亚单位,RecBC继续解开双链。这样就得到了链交换和重组的位点。Chi是一个被recBCD基因编码的酶的作用目标。 RuvA辨认Holliday连合处的结构,RuvB是一个解旋酶,并以六聚体形式结合于双链DNA上,解开双链螺旋。ruvC,编码了一个末端核酸酶,它能确精地辨认出Holliday结合处,结合到Holliday中间产物上,将这样的结合处分开。9. 阐述易位因子概念和反转录病毒复制机制。易位因子:即转座子,是存在于染色体上可自主复制和位移的基本单位。它可分为简单转座子,不含有任何宿主基因也称为插入序列;复合式转座子,是一类带有某些抗药性
24、基因(或其他任何宿主基因)的转座子,其两翼往往是两个相同或高度同源的IS序列。反转录病毒复制机制:反转录病毒的复制是由其自身基因组上pol基因编码的反转录指导完成的,该酶具有以下三种性能:能以RNA为模板合成出第一条互补的DNA链(逆转录酶活性);在新和成的DNA链上合成另一条互补DNA链,形成双链DNA(DNA聚合酶活性);水解除去RNA-DNA杂合分子中的RNA(Rnase活性,即核糖核酸酶活性)。机制:反转录病毒的复制是通过一个RNA分子中间体完成的,是由其自身基因组上pol基因编码的反转录和通过一个RNA分子中间体来完成的反转录酶具有逆转录酶、DNA聚合酶和核糖核酸酶活性。当反转录病毒
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复试 2010 年分 生物学 硕士生 复习题
限制150内