数据挖掘统计学理论之于ERP系统的应用浅析.doc
《数据挖掘统计学理论之于ERP系统的应用浅析.doc》由会员分享,可在线阅读,更多相关《数据挖掘统计学理论之于ERP系统的应用浅析.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流数据挖掘统计学理论之于ERP系统的应用浅析.精品文档.数据挖掘:统计学技术之于ERP系统的应用浅析摘 要:随着信息技术的不断发展和现代管理业务需求的不断提升,同时在企业、学术团体及媒体的推动下,ERP已经成为近年来IT界的一个热点,应用ERP能够有效改善管理,全面提升企业竞争能力已是不争的事实。然而随着ERP系统的深入应用, 企业逐渐形成了大量的数据, 如何利用并分析ERP系统中的数据来帮助管理决策, 已经引起人们的重视并成为ERP系统建设的重要目标之一。本文将以数据挖掘技术为切入点,对统计学相关原理和方法在ERP系统中的应用进行简要分析。关
2、键词:ERP系统 数据挖掘 统计学一 概念与定义:定义1【1】:ERP是建立在信息技术的基础上, 利用现代企业的先进管理思想, 全面地集成了企业的所有资源信息, 并为企业提供决策、计划、控制与经营业绩评估的全方位和系统化的管理平台。定义2【2】:数据挖掘就是从大量的数据中挖掘出有用的信息, 即从大量的、不完全的、有噪音的、模糊的、随机的实际应用数据中发现隐含的、规律性的, 人们事先未知的, 但又是潜在有用的并且最终可理解的信息和知识的非平凡过程。定义3【3】:统计: 收集、分析、表述和解释数据。二 数据挖掘技术在ERP系统中的应用与传统的数据分析手段相比, 数据挖掘有以下几个特点:首先, 数据
3、挖掘处理的是大量或海量的数据; 其次, 数据挖掘的目的是发现隐含的、事先未知的知识; 再次, 数据挖掘更倾向于把任务交给程序自动完成, 也是人工智能的一种应用; 最后, 数据挖掘是一个交叉学科, 是高级的数据分析手段。数据挖掘使用各种不同的算法来完成不同的任务。数据挖掘的任务一般可以分为两类:描述和预测。描述性数据挖掘任务刻画数据库中数据的一般特性。预测性挖掘任务在当前数据上进行推断, 以进行预测。最基本也是最重要的数据挖掘任务为:1) 关联: 关联分析发现关联规则, 这些规则展示了属性与属性之间的关系;2) 聚类: 产生分组标记, 根据最大化类内相似性、最小化类间相似性原则将数据分成不同的簇
4、;3) 分类/预测: 找出描述并区分数据类或概念的模型, 以便能使用模型预测类标记未知的对象类。数据挖掘还有序列发现、相关分析、孤立点分析等多种任务。1 基于数据仓库的应用框架【4】根据ERP系统的特点, 结合典型的数据挖掘系统结构 , 一种基于数据仓库的ERP系统数据挖掘应用框架如图1所示, 标记为应用框架1。ERP业务数据库属于数据库技术中的操作型数据库, 主要处理联机事务, 关注多事务处理、数据的一致性与完整性等, 重点不在于大数据量的查询与分析。而数据仓库是分析型数据库, 是一种数据的长期存储,数据经过组织在一致的模式下存放, 通常是历史数据的汇总, 目的是为了支持决策。数据仓库的数据
5、组织、存取方法以及支持的主要功能等都是针对历史数据的查询与分析而设计, 因此数据仓库能更好地支持数据挖掘。图1所示的应用框架描述如下:a) 数据处理模块: 将ERP业务数据库的数据经过提取、转换与加载等, 转换为符合数据仓库要求的数据。b) 数据挖掘引擎: 用于执行数据挖掘任务, 包括关联规则、聚类、分类等。c) 知识库: 领域知识, 用于指导数据挖掘执行, 也用于评估数据挖掘的结果模式。d) 模式评估: 该模块与数据挖掘引擎交互, 也与用户交互, 并根据知识库的相关知识, 评估数据挖掘结果的兴趣度, 过滤发现的模式。基于数据仓库的数据挖掘应用框架的特点是: 数据挖掘过程与ERP业务过程分离,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 挖掘 统计学 理论 ERP 系统 应用 浅析
限制150内