数学-确定性的丧失.doc
《数学-确定性的丧失.doc》由会员分享,可在线阅读,更多相关《数学-确定性的丧失.doc(205页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流数学-确定性的丧失.精品文档.数学:确定性的丧失F克莱因 著目 录总 序序 言引 论第一章 数学真理的起源第二章 数学真理的繁荣第三章 科学的数学化第四章 第一场灾难:真理的丧失第五章 一门逻辑学科不合逻辑的发展第六章 不合逻辑的发展:分析的困境第七章 不合逻辑的发展:19世纪的困境第八章 不合逻辑的发展:天堂之门第九章 天堂受阻:理性的新危机第十章 逻辑主义与直觉主义第十一章 形式主义与集合论公理化基础第十二章 灾难第十三章 数学的孤立第十四章 数学向何处去第十五章 自然的权威总序科学,特别是自然科学,最重要的目标之一,就是追寻科学本身的原
2、动力,或曰追寻其第一推动。同时,科学的这种追求精神本身,又成为社会发展和人类进步的一种最基本的推动。科学总是寻求发现和了解客观世界的新现象,研究和掌握新规律,总是在不懈地追求真理。科学是认真的、严谨的、实事求是的,同时,科学又是创造的。科学的最基本态度之一就是疑问,科学的最基本精神之一就是批判。的确,科学活动,特别是自然科学活动,比较起其他的人类活动来,其最基本的特征就是不断进步。哪怕在其他方面倒退的时候,科学却总是进步着,即使是缓慢而艰难的进步。这表明,自然科学活动中包含着人类的最进步因素。正是在这个意义上,科学堪称为人类进步的“第一推动”。科学教育,特别是自然科学的教育,是提高人们素质的重
3、要因素,是现代教育的一个核心。科学教育不仅使人获得生活和工作所需的知识和技能,更重要的是使人获得科学思想、科学精神、科学态度以及科学方法的熏陶和培养,使人获得非生物本能的智慧,获得非与生俱来的灵魂。可以这样说,没有科学的“教育”,只是培养信仰,而不是教育。没有受过科学教育的人,只能称为受过训练,而非受过教育。正是在这个意义上,科学堪称为使人进化为现代人的“第一推动”。近百年来,无数仁人智士意识到,强国富民再造中国离不开科学技术,他们为摆脱愚昧与无知作了艰苦卓绝的奋斗,中国的科学先贤们代代相传,不遗余力地为中国的进步献身于科学启蒙运动,以图完成国人的强国梦。然而应该说,这个目标远未达到。今日的中
4、国需要新的科学启蒙,需要现代科学教育。只有全社会的人具备较高的科学素质,以科学的精神和思想、科学的态度和方法作为探讨和解决各类问题的共同基础和出发点,社会才能更好地向前发展和进步。因此,中国的进步离不开科学,是毋庸置疑的。正是在这个意义上,似乎可以说,科学已被公认是中国进步所必不可少的推动。然而,这并不意味着,科学的精神也同样地被公认和接受。虽然,科学已渗透到社会的各个领域和层面,科学的价值和地位也更高了。但是,毋庸讳言,在一定的范围内,或某些特定时候,人们只是承认“科学是有用的”,只停留在对科学所带来的后果的接受和承认,而不是对科学的原动力,科学的精神的接受和承认。此种现象的存在也是不能忽视
5、的。科学的精神之一,是它自身就是自身的“第一推动”。也就是说,科学活动在原则上是不隶属于服务于神学的,不隶属于服务于儒学的,科学活动在原则上也不隶属于服务于任何哲学。科学是超越宗教差别的,超越民族差别的,超越党派差别的,超越文化的地域差别的,科学是普适的、独立的,它自身就是自身的主宰。湖南科学技术出版社精选了一批关于科学思想和科学精神的世界名著,请有关学者译成中文出版,其目的就是为了传播科学的精神,科学的思想,特别是自然科学的精神和思想,从而起到倡导科学精神,推动科技发展,对全民进行新的科学启蒙和科学教育的作用,为中国的进步作一点推动。丛书定名为第一推动,当然并非说其中每一册都是第一推动,但是
6、可以肯定,蕴含在每一册中的科学的内容、观点、思想和精神,都会使你或多或少地更接近第一推动,或多或少地发现,自身如何成为自身的主宰。第一推动丛书编委会序言人类对于宇宙以及数学地位的认识已被迫作出了根本性的改变,本书要讨论的正是这一点。现在我们知道,数学已不再受到普遍尊重和景仰。数学曾经被认为是精确论证的顶峰,真理的化身,是关于宇宙设计的真理。那么,人类是如何认识到这种观点是错误的,我们现在的观点又是什么,这正是本书的主题。引论中将简要陈述这些主题,部分材料可由详尽的数学史略拾一二。但是,对于普通读者来说,一种直接的、非专业性的探讨更便于接受和理解。许多数学家可能更愿意把对数学当前地位的揭示控制在
7、数学圈里,公开曝光这些困难也许会出现不好的效果,家丑不可外扬嘛。但是,受理性指导的人们必须充分认识到他们所掌握的工具的力量,认识到推理的能力及其局限性,这远比盲目相信有益得多,后者很可能导致错误的思想甚至毁灭。(以下为致谢部分,从略) M克莱因布鲁克林,纽约1980年 1月引论若想预见数学的未来,正确的方法是研究它的历史和现状。H彭加勒战争、饥荒和瘟疫能引起悲剧,然而,人类思想的局限性也能引起智力悲剧。本书论及的不幸事件降临在人类最为卓著且无与伦比的成就,对人类的理性精神具有最持久和最深刻的影响数学的头上。换句话说,这本书在非专业层次上探讨数学尊严的兴衰。看到数学现在的宏大规模,日益增多甚至呈
8、繁荣之势的数学活动,每年发表的数以千计的研究论文,对计算机兴趣的迅猛飞涨,以及尤其是在社会科学和生物科学中对定量关系的广泛研究,数学的衰落何从谈起?悲剧存在于何处?要回答这些问题,我们必须首先考虑是什么为数学赢得了巨大的声望和荣誉。作为一个独立知识体系的数学起源于古希腊,自它诞生之日起的两千多年来,数学家们一直在追求真理,而且成就辉煌。关于数和几何图形的庞大理论体系为数学提供了一个看来似乎永无休止的确定性前景。在数学以外的领域,数学概念及其推论为重大的科学理论提供精髓。尽管通过数学和科学的合作才获得的知识用到了自然定律,但它们看来似乎与绝对的数学真理一样绝对可信,因为天文学、力学、光学、空气动
9、力学中的数学所做的预测与观察和实验相当吻合。因此,数学能牢固把握宇宙的所作所为,能瓦解玄秘并代之以规律和秩序。人类得以趾高气扬地俯瞰他周围的世界,吹嘘自己已经掌握了宇宙的许多秘密(实际上是一系列数学定理)。拉普拉斯的话概括了数学家们一直在不懈地寻求真理的信念。他说,牛顿是最幸运的人,因为只有一个宇宙,而他已发现了它的规律。数学依赖于一种特殊的方法去达到它惊人而有力的结果,即从不证自明的公理出发进行演绎推理。它的实质是,若公理为真,则可以保证由它演绎出的结论为真。通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出显然是毋庸置疑、无可辩驳的结论。数学的这套方法今天仍然沿用,任何时候,谁想找一个
10、推理的必然性和准确性的例子,一定会想到数学。这种数学方法所取得的成功吸引了最伟大的智者,数学已显示了人类理性的能力、根源和力量。所以他们猜测,为什么不能把这种方法用到由权威、风俗、习惯控制的领域,比如在哲学、神学、伦理学、美学及社会科学中去寻求真理呢?人类的推理能力,在数学及自然科学中,是如此的卓有成效,肯定也将成为上述其他领域思想和行为的主宰,为其获得真理的美和美的真理。因此,在称作理性时代的启蒙时代,数学方法甚至加上一些数学概念和定理,用到了人文事务中。洞察力最丰富的来源是后者。19世纪初的创造,包括令人奇怪的几种几何学和代数学,迫使数学家们极不情愿地勉强承认绝对意义上的数学以及科学中的数
11、学真理并不都是真理。例如,他们发现几种不同的几何学同等地与空间经验相吻合,它们可能都不是真理。显然,自然界的数学设计并不是固有的,或者如果是的话,人类的数学都未必是那个设计的最好诠释。开启真理的钥匙失去了,这一事实是降临到数学头上的第一个不幸事件。新的几何学和代数学的诞生使数学家们感受到另一个宇宙的震动。寻求真理的信念使数学家们如醉如痴,总是迫不及待地用严密论证去追求那些虚无飘渺的真理。认识到数学并不是真理的化身动摇了他们产生于数学的那份自信,他们开始重新检验他们的创造。他们失望地发现数学中的逻辑形容枯槁,惨不忍睹。事实上,数学已经不合逻辑地发展。其不仅包括错误的证明,推理的漏洞,还有稍加注意
12、就能避免的疏误。这样的大错比比皆是。这种不合逻辑的发展还涉及对概念的不充分理解,无法真正认识逻辑所需要的原理,以及证明的不够严密;就是说,直觉、实证及借助于几何图形的证明取代了逻辑论证。不过,数学仍然是一种对宇宙的有效描述,而且在许多人心里,特别是在柏拉图主义者看来,数学自身当然还是一个颇具魅力的知识体系,一个因具真实性而受到青睐的部分。因此,数学家们决定弥补丢失了的逻辑结构,重建有缺陷的部分。在 19世纪下半叶,数学的严谨化运动格外引人注目。到 1900年,数学家确信他们已实现了自己的目标。尽管他们不得不满足于数学仅能作为宇宙的一个近似描述的观点,许多人甚至放弃了宇宙的数学化设计这一信念,但
13、他们的确庆幸他们重建了数学的逻辑结构。然而,他们还没来得及炫耀自封的成功,在重建的数学中就发现了矛盾。一般称这些矛盾为悖论,这是避免直接说矛盾而破坏了数学逻辑的委婉用语。当时那些领头的数学家几乎立刻就投身于解决这些矛盾,结果他们构想、阐述甚至推出了四种不同的数学结构,每一种都有众多的追随者。那些基础的学派不仅努力解决已有的矛盾而且力争避免新的矛盾出现,就是说,建立数学的相容性。在这些基础研究中又出现了其他的问题,某些公理和演绎逻辑推理的可接受性也成为几个学派采取不同立场的重要原因。到 1930年,数学家已满足于接受几种数学基础的一两个,并且宣称自己的数学证明至少和这些学派的原则相符。但是,灾难
14、再次降临,形式是K哥德尔的一篇著名论文。哥德尔证明了那几个学派所接受的逻辑原理无法证明数学的一致性。这还不包括论文里其他一些意义重大、影响深远的结果。哥德尔表明,对已取得的成功提出质疑不能不用到非常可疑的逻辑原理。哥德尔定理引起一场巨变。随后的发展带来了更大的麻烦。例如,就连过去极度推崇的、被认为是精密科学方法的公理化演绎方法看来也是有缺陷的。这些新的发展给数学增加了多种可能的结构,同时也把数学家分成了更多的相异群体。数学的当前困境是有许多种数学而不是只有一种,而且由于种种原因每一种都无法使对立学派满意。显然,普遍接受的概念、正确无误的推理体系1800年时的尊贵数学和那时人的自豪现在都成了痴心
15、妄想。与未来数学相关的不确定性和可疑,取代了过去的确定性和自满。关于“最确定的”科学的基础意见不一致不仅让人吃惊,而且,温和一点说,是让人尴尬。目前的数学或是故作深沉,或是对广泛承认的真理,所谓完美无缺的逻辑的拙劣模仿。有的数学家认为,关于接受什么作为真正数学的不同观点,有一天会统一起来。这些人中比较有名的是一群署名为布尔巴基的法国领头数学家:长期以来,对数学原理的重要修正几乎无一不在不确定性时期之后,而不确定性确实使矛盾出现了并且一定得被解决。至今已有 25个世纪之久的这段时期,数学家们一直在改正他们的错误,并且看到了这门科学欣欣向荣,而不是枯竭衰败。这使他们有权力对未来充满希望。然而,更多
16、的数学家并不乐观。本世纪最伟大的数学家之一,H.魏尔在 1944年说:数学的终极基础和终极意义尚未解决,我们不知道沿着什么方向可以找到最终答案,或者甚至于是否有希望得到一个最终的、客观的答案。“数学化”很可能是人类原始创造力的一项创造性活动,类似于语言或音乐,其历史观点否认完全客观的合理性。用哥德的话说:一门科学的历史就是这门科学本身。对于正确的数学是什么所存在的分歧以及不同基础的多样性不仅严重影响数学本身,还波及到最为生机勃勃的自然科学。我们将看到,最先进的自然科学理论(即这种理论的结论可以在感觉上或实体上体现出来。例如假设我们一点也不懂电磁波是什么,但我们却能听到收音机中传出的声音),全都
17、是数学化的。因此,没有亲自对数学基础下过功夫,而又不打算花费数年时间研究不完美的数学的科学家,一定会关心什么样的数学能被理直气壮地应用。真理的丧失,数学和科学不断增加的复杂性,以及何种方法用于数学是最保险的不确定性,已使大多数数学家放弃科学。风声鹤唳,草木皆兵,数学家们不得不退回到证明方法看起来似乎很安全的数学领域。他们还发现人为编造出来的问题比自然界提出来的问题更富魅力,处理起来更加得心应手。因完美的数学是什么而产生的危机和矛盾还阻碍了数学的方法在许多其他文化领域中的应用,如哲学、政治科学、伦理学、美学。找到客观、正确的定律和标准的希望变得微弱了,理性时代已经过去。尽管数学令人不满意,方法复
18、杂多变,对可接受公理持不同意见,还有随时可能出现的新矛盾,都会殃及大部分数学,但是,一些数学家仍然把数学应用于自然现象中,而且事实上把应用领域扩大到经济学、生物学和社会学。数学的继续有效给我们两点启示。第一点是这种有效性可用作判别正确性的准则,当然这个准则是暂时性的。今天认为正确的,也许下次应用时就会证明是错的。第二点涉及到未知。真正的数学是什么?对此并无定论。为什么数学依旧有效?我们是在用不完美的工具制造奇迹吗?如果人类已经被欺骗了,大自然也会受骗而屈服于人类的数学命令吗?显然不会。而且,正是凭借建立在数学之上的技术,人类成功地登上了月球,探测了火星和木星。这难道不是对宇宙中的数学理论的证实
19、吗?那么,数学的人为因素与变幻莫测又何从谈起呢?当心智和灵魂迷惘不定的时候,躯体能生存下去吗?当然对于人类本身及数学,确实如此。因此我们应该去研究为什么会这样。尽管数学的基础尚不确定,数学家们的理论亦彼此冲突,而数学却已被证明成就辉煌,风采依然。第一章 数学真理的起源极度幸福的灵魂,是为谁而激发!为了这些真理,去度量闪烁的星空!他们用思想的缰绳,驯服了桀傲的天体。过去扑朔迷离的天空,现在变得清清楚楚。奥维德任何值得一提的文明都探索过真理。思索的人们尽管不能,但总是试图去理解复杂多变的自然现象,去解开人类如何定居在这个地球上的谜题,去弄明白人生的目的,去探索人类的归宿。在所有早期文明中,这些问题
20、的回答都是宗教领袖给出的,并为人们所普遍接受。只有古希腊文明是个例外。希腊人发现(人类所作出的最伟大的发现)了推理的作用。正是古典时期(公元前 600年至前 300年间的鼎盛时期)的希腊人,认识到人类有智慧、有思维(有时佐以观察或实验),能够发现真理。是什么导致希腊人作出这个发现,这个问题不大好回答。把推理用于人类活动和思维的始祖曾生活在爱奥尼亚古希腊人在小亚细亚的一个定居处。许多历史学家试图依据政治和社会环境对此作出解释,比如,爱奥尼亚人有更大的自主性去无视统治欧洲希腊文明的宗教信仰。但是,我们所知的在约公元前 600年以前的希腊历史过于零碎,无法作出明确的解释。当时希腊人把推理用于政治体系
21、、伦理道德、法律、教育和其他许多方面。他们的主要的、决定性地影响了后代文明的贡献是接受了对推理的最强有力的挑战,知道了自然界有规律可言。在作出这个贡献以前,希腊人和古代其他文明时期的人们认为自然是混乱、反复无常,甚至是恐怖的。自然现象是无法解释的,或者是神的意志决定的,只有用祈祷、祭祀和其他宗教仪式来解脱。其卓越的文明可追溯到公元前 3000年的巴比伦人和埃及人,他们确实注意到了日月运动的周期现象,并据此设立了历法,但却没有更深入地研究它们。这些极少的偶然的观察没有改变他们对自然的态度。希腊人敢于正视自然。他们的精神领袖(如果不是普通民众)摒弃了传统观念、超自然力、迷信、教条和其他思想束缚。他
22、们是最早检验并试图理解各种谜一般的复杂的自然活动的人们。他们以思维与似乎瞬息万变的宇宙现象抗争,将理性之光洒于其上。他们有着永不满足的好奇心和勇气,他们提出和回答了许多人遇到过、但却极少人试图解决,并且只能被具有最高智力水平的人所解决的问题。整个宇宙的运转是有计划的吗?植物、动物、人类、星系、光和声,仅仅是物理现象还是一个完美设计的一部分?由于希腊人总梦想着提出新见解,所以他们建立了后来统治整个西方思想中关于宇宙的概念。希腊的智者们对自然采取了一种全新的态度。这种态度是理性的、批判的和反宗教的。神学中上帝按其意愿创造了人和物质世界的信仰被摒弃了。智者们终于得出了这样的观念:自然是有序的,按完美
23、的设计而恒定地运行着。从星体的运动到树叶的颤动,所有感官能感知的现象都能用一种精确、和谐而理智的形式来描述。简而言之,自然是按理性设计的,这种设计,虽然不为人的行为而影响,却能被人的思维所理解。希腊人不仅是探索混杂现象的秩序和规则的勇敢的先驱,而且也是以才智发掘出自然现象显而易见所遵循的基本模式的先驱。他们敢于询问并且发现了人类观测到的最壮观的景象的基本规律:朝升夕落的太阳,阴晴圆缺的月亮,光彩夺目的行星,星汉灿烂的夜空,奇妙无比的日蚀、月蚀。正是公元前 6世纪的爱奥尼亚哲学家首先尝试寻求对大自然和宇宙运行规律的合理解释。这一时期的著名哲学家们,如泰勒斯(Thales)、阿那克西曼德(Anax
24、imander)、阿那克西米尼(Anaximenes)、赫拉克利特(Heraclitus)和阿那克萨哥拉(Anaxagoras),各自恪守一个主旨去解释宇宙的构成。比如泰勒斯认为万物都是由气态、液态和固态的水组成的,他试图用水的观点解释许多现象这是一个不无道理的解释。因为云、雾、露、雨和雹是水的不同形态,而水是生命不可缺乏的,它滋润庄稼,养育动物。现在我们知道甚至人体的 90是水。爱奥尼亚人的自然哲学是一系列的大胆的观察,敏锐的猜测和天赋的直觉,而不是广泛而细致的科学研究的成果。这些人也许有些过于急切看到世界的全貌,从而匆匆忙忙得到一些泛泛的结论。但他们的确抛弃了一些陈腐的神秘观点,而代之以唯
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 确定性 丧失
限制150内