数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)+生存分析+贝叶斯概率公式+全概率公式.doc
《数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)+生存分析+贝叶斯概率公式+全概率公式.doc》由会员分享,可在线阅读,更多相关《数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)+生存分析+贝叶斯概率公式+全概率公式.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)+生存分析+贝叶斯概率公式+全概率公式.精品文档.数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个, 则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望
2、为00.0110.920.0630.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。可以简单的理解为求一个概率性事件的平均状况。各种数学分布的方差是:1、 一个完全符合分布的样本2、 这个样本的方差概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。下
3、图为概率密度函数图(F(x)应为f(x),表示概率密度):离散型分布:二项分布、泊松分布连续型分布:指数分布、正态分布、X2分布、t分布、F分布抽样分布抽样分布只与自由度,即样本含量(抽样样本含量)有关二项分布(binomial distribution):例子抛硬币1、 重复试验(n个相同试验,每次试验两种结果,每种结果概率恒定伯努利试验)2、 P(X=0), P(X=1), P(X=3), .所有可能的概率共同组成了一个分布,即二项分布泊松分布(possion distribution):1、 一个单位内(时间、面积、空间)某稀有事件2、 此事件发生K次的概率3、P(X=0), P(X=1
4、), P(X=3), .所有可能的概率共同组成了一个分布,即泊松分布二项分布与泊松分布的关系:二项分布在事件发生概率很小,重复次数n很大的情况下,其分布近似泊松分布均匀分布(uniform distribution):分为连续型均匀分布和离散型均匀分布离散型均匀分布:1、 n种可能的结果2、 每个可能的概率相等(1/n)连续型均匀分布:1、 可能的结果是连续的2、 每个可能的概率相等()连续型均匀分布概率密度函数如下图:指数分布(exponential distribution):用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。指数分布常用于
5、各种“寿命”分布的近似。1、连续型分布,每个点的概率:2、无记忆性。已经使用了s小时的元件,它能再使用t小时的概率,与一个从未使用过的元件使用t小时的概率相同。即它对已经使用过的s小时没有记忆。指数分布的概率密度函数如下图:正态分布(normal distribution):又称高斯分布。1、 描述一个群体的某个指标。2、 这个指标是连续的。3、 每个特定指标在整个群体中都有一个概率()。4、 所有指标概率共同组成了一个分布,这个分布就是正态分布。正态分布的概率密度函数如下图:中心极限定理:不论总体的分布形式如何(正态或非正态),只要样本(抽样样本)含量n足够大时,样本均数的分布就近似正态分布
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 分布 二项分布 正态分布 均匀分布 指数分布 生存 分析 贝叶斯 概率 公式
链接地址:https://www.taowenge.com/p-17616479.html
限制150内