概率论和数理统计复旦大学课后题答案1.doc
《概率论和数理统计复旦大学课后题答案1.doc》由会员分享,可在线阅读,更多相关《概率论和数理统计复旦大学课后题答案1.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流概率论和数理统计复旦大学课后题答案1.精品文档.1 概率论与数理统计习题及答案习题 一1略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1) A发生,B,C都不发生; (2) A与B发生,C不发生;(3) A,B,C都发生; (4) A,B,C至少有一个发生;(5) A,B,C都不发生; (6) A,B,C不都发生;(7) A,B,C至多有2个发生; (8) A,B,C至少有2个发生.【解】(1) A (2) AB (3) ABC(4) ABC=CBABCACABABC=(5) = (6) (7)
2、 BCACABCAB=(8) ABBCCA=ABACBCABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P().【解】 P()=1-P(AB)=1-P(A)-P(A-B)=1-0.7-0.3=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1) 在什么条件下P(AB)取到最大值?(2) 在什么条件下P(AB)取到最小值?【解】(1) 当AB=A时,P(AB)取到最大值为0.6.(2) 当AB=时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC
3、)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】 P(ABC)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)7.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p=8.对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率;(3) 求五个人的生日不都在星期日的概率.【解】(1) 设A1=五个人的生日都在星期日,基本事件总数为75,有利事件仅1个,故 P(A1)=()5 (亦可用独立性求解,下同)(2) 设A2=五个人生日都不在星期
4、日,有利事件数为65,故P(A2)=()5(3) 设A3=五个人的生日不都在星期日P(A3)=1-P(A1)=1-()59.略.见教材习题参考答案.10.一批产品共N件,其中M件正品.从中随机地取出n件(n30.如图阴影部分所示.22.从(0,1)中随机地取两个数,求:(1) 两个数之和小于的概率;(2) 两个数之积小于的概率.【解】 设两数为x,y,则0x,y1.(1) x+y.(2) xy=.23.设P()=0.3,P(B)=0.4,P(A)=0.5,求P(BA)【解】 24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出
5、3个球,求第二次取出的3个球均为新球的概率.【解】 设Ai=第一次取出的3个球中有i个新球,i=0,1,2,3.B=第二次取出的3球均为新球由全概率公式,有25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A=被调查学生是努力学习的,则=被调查学生是不努力学习的.由题意知P(A)=0.8,P()=0.2,又设B=被调查学生考试及格.由题意知P(B|A)=0.9,P(|)=0.9,故由
6、贝叶斯公式知(1)即考试及格的学生中不努力学习的学生仅占2.702%(2) 即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A和B传递出来,接收站收到时,A被误收作B的概率为0.02,而B被误收作A的概率为0.01.信息A与B传递的频繁程度为21.若接收站收到的信息是A,试问原发信息是A的概率是多少?【解】 设A=原发信息是A,则=原发信息是BC=收到信息是A,则=收到信息是B由贝叶斯公式,得27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设Ai=箱中原有i个白球
7、(i=0,1,2),由题设条件知P(Ai)=,i=0,1,2.又设B=抽出一球为白球.由贝叶斯公式知28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A=产品确为合格品,B=产品被认为是合格品由贝叶斯公式得29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 复旦大学 课后 答案
限制150内