最大似然估计概述.doc
《最大似然估计概述.doc》由会员分享,可在线阅读,更多相关《最大似然估计概述.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流最大似然估计概述.精品文档.最大似然估计概述 最大似然估计 是一种统计方法 ,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家罗纳德费雪 爵士在1912年至1922年间开始使用的。 “似然”是对likelihood 的一种较为贴近文言文的翻译,“似然”用现代的中文来说即“可能性”。故而,若称之为“最大可能性估计”则更加通俗易懂。 最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计 的系统发生树重建方法的代表。该方法在每组序列比对中考虑了每个核苷酸替换的概
2、率。 最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最大。通俗一点讲,就是在什么情况下最有可能发生已知的事件。举个例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少?
3、我想很多人立马有答案:70%。这个答案是正确的。可是为什么呢?(常识嘛!这还要问?!)其实,在很多常识的背后,都有相应的理论支持。在上面的问题中,就有最大似然法的支持例如,转换出现的概率大约是颠换的三倍。在一个三条序列的比对中,如果发现其中有一列为一个C,一个T和一个G,我们有理由认为,C和 T所在的序列之间的关系很有可能更接近。由于被研究序列的共同祖先序列是未知的,概率的计算变得复杂;又由于可能在一个位点或多个位点发生多次替换,并且不是所有的位点都是相互独立,概率计算的复杂度进一步加大。尽管如此,还是能用客观标准来计算每个位点的概率,计算表示序列关系的每棵可能的树的概率。然后,根据定义,概率
4、总和最大的那棵树最有可能是反映真实情况的系统发生树。 最大似然估计的原理给定一个概率分布D ,假定其概率密度函数(连续分布)或概率聚集函数(离散分布)为f D ,以及一个分布参数 ,我们可以从这个分布中抽出一个具有n 个值的采样 ,通过利用f D ,我们就能计算出其概率: 但是,我们可能不知道 的值,尽管我们知道这些采样数据来自于分布D 。那么我们如何才能估计出 呢?一个自然的想法是从这个分布中抽出一个具有n 个值的采样X 1 ,X 2 ,.,X n ,然后用这些采样数据来估计 . 一旦我们获得 ,我们就能从中找到一个关于 的估计。最大似然估计会寻找关于 的最可能的值(即,在所有可能的 取值中
5、,寻找一个值使这个采样的“可能性”最大化)。这种方法正好同一些其他的估计方法不同,如 的非偏估计,非偏估计未必会输出一个最可能的值,而是会输出一个既不高估也不低估 的 值。 要在数学上实现最大似然估计法 ,我们首先要定义可能性 : 并且在 的所有取值上,使这个函数最大化。这个使可能性最大的值即被称为 的最大似然估计 。 注意这里的可能性是指不变时,关于 的一个函数。 最大似然估计函数不一定是惟一的,甚至不一定存在。 最大似然估计的例子离散分布,离散有限参数空间考虑一个抛硬币 的例子。假设这个硬币正面跟反面轻重不同。我们把这个硬币抛80次(即,我们获取一个采样 并把正面的次数记下来,正面记为H,
6、反面记为T)。并把抛出一个正面的概率记为p ,抛出一个反面的概率记为1 p (因此,这里的p 即相当于上边的 )。假设我们抛出了49个正面,31 个反面,即49次H,31次T。假设这个硬币是我们从一个装了三个硬币的盒子里头取出的。这三个硬币抛出正面的概率分别为p = 1 / 3 , p = 1 / 2 , p = 2 / 3 . 这些硬币没有标记,所以我们无法知道哪个是哪个。使用最大似然估计 ,通过这些试验数据(即采样数据),我们可以计算出哪个硬币的可能性最大。这个可能性函数取以下三个值中的一个: 我们可以看到当时,可能性函数取得最大值。这就是p 的最大似然估计 . 离散分布,连续参数空间现在
7、假设例子1中的盒子中有无数个硬币,对于 中的任何一个p , 都有一个抛出正面概率为p 的硬币对应,我们来求其可能性函数的最大值: 其中 . 我们可以使用微分法来求最值。方程两边同时对p 取微分,并使其为零。 在不同比例参数值下一个二项式过程的可能性曲线 t = 3, n = 10;其最大似然估计值发生在其众数 (数学)并在曲线的最大值处。 其解为p = 0 , p = 1 ,以及p = 49 / 80 . 使可能性最大的解显然是p = 49 / 80 (因为p = 0 和p = 1 这两个解会使可能性为零)。因此我们说最大似然估计值 为. . 这个结果很容易一般化。只需要用一个字母t 代替49
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最大 估计 概述
限制150内