机械类外文翻译变速箱噪音英语论文.doc
《机械类外文翻译变速箱噪音英语论文.doc》由会员分享,可在线阅读,更多相关《机械类外文翻译变速箱噪音英语论文.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流机械类外文翻译变速箱噪音英语论文.精品文档.Gearbox NoiseCorrelation with Transmission Error and Influence of Bearing PreloadDoctoral Thesis in Machine DesignTRITA-MMK 2008:19ISSN 1400-1179ISRN/KTH/MMK/R-08/19-SEDepartment of Machine DesignRoyal institute of TechnologySE100 44 Stockholm, Sweeden
2、 Mats kerblom 2008ABSTRACTThe five appended papers all deal with gearbox noise and vibration. The first paper presents a review of previously published literature on gearbox noise and vibration.The second paper describes a test rig that was specially designed and built for noise testing of gears. Fi
3、nite element analysis was used to predict the dynamic properties of the test rig, and experimental modal analysis of the gearbox housing was used to verify the theoretical predictions of natural frequencies.In the third paper, the influence of gear finishing method and gear deviations on gearbox noi
4、se is investigated in what is primarily an experimental study. Eleven test gear pairs were manufactured using three different finishing methods. Transmission error, which is considered to be an important excitation mechanism for gear noise, was measured as well as predicted. The test rig was used to
5、 measure gearbox noise and vibration for the different test gear pairs. The measured noise and vibration levels were compared with the predicted and measured transmission error. Most of the experimental results can be interpreted in terms of measured and predicted transmission error. However, it doe
6、s not seem possible to identify one single parameter,such as measured peak-to-peak transmission error, that can be directly related to measured noise and vibration. The measurements also show that disassembly and reassembly of the gearbox with the same gear pair can change the levels of measured noi
7、se and vibration considerably.This finding indicates that other factors besides the gears affect gear noise.In the fourth paper, the influence of bearing endplay or preload on gearbox noise and vibration is investigated. Vibration measurements were carried out at torque levels of 140 Nm and 400Nm, w
8、ith 0.15 mm and 0 mm bearing endplay, and with 0.15 mm bearing preload. The results show that the bearing endplay and preload influence the gearbox vibrations. With preloaded bearings, the vibrations increase at speeds over 2000 rpm and decrease at speeds below 2000 rpm, compared with bearings with
9、endplay. Finite element simulations show the same tendencies as the measurements.The fifth paper describes how gearbox noise is reduced by optimizing the gear geometry for decreased transmission error. Robustness with respect to gear deviations and varying torque is considered in order to find a gea
10、r geometry giving low noise in an appropriate torque range despite deviations from the nominal geometry due to manufacturing tolerances. Static and dynamic transmission error, noise, and housing vibrations were measured. The correlation between dynamic transmission error, housing vibrations and nois
11、e was investigated in speed sweeps from 500 to 2500 rpm at constant torque. No correlation was found between dynamic transmission error and noise. Static loaded transmission error seems to be correlated with the ability of the gear pair to excite vibration in the gearbox dynamic system.Keywords: gea
12、r, gearbox, noise, vibration, transmission error, bearing preload.ACKNOWLEDGEMENTSThis work was carried out at Volvo Construction Equipment in Eskilstuna and at the Department of Machine Design at the Royal Institute of Technology (KTH) in Stockholm. The work was initiated by Professor Jack Samuelss
13、on (Volvo and KTH), Professor Sren Andersson (KTH), and Dr. Lars Brthe (Volvo).The financial support of the Swedish Foundation for Strategic Research and the Swedish Agency for Innovation Systems VINNOVA is gratefully acknowledged. Volvo Construction Equipment is acknowledged for giving me the oppor
14、tunity to devote time to this work.Professor Sren Andersson is gratefully acknowledged for excellent guidance and encouragement.I also wish to express my appreciation to my colleagues at the Department of Machine Design, and especially to Dr. Ulf Sellgren for performing simulations and contributing
15、to the writing of Paper D, and Dr. Stefan Bjrklund for performing surface finish measurements.The contributions to Paper C by Dr. Mikael Prssinen are highly appreciated. All contributionsto this work by colleagues at Volvo are gratefully appreciated.1 INTRODUCTION1.1 BackgroundNoise is increasingly
16、considered an environmental issue. This belief is reflected in demands for lower noise levels in many areas of society, including the working environment. Employees spend a lot of time in this environment and noise can lead not only to hearing impairment but also to decreased ability to concentrate,
17、 resulting in decreased productivity and an increased risk of accidents. Quality, too, has become increasingly important. The quality of a product can be defined as its ability to fulfill customers demands. These demands often change over time, and the best competitors in the market will set the sta
18、ndard.Noise concerns are also expressed in relation to construction machinery such as wheel loaders and articulated haulers. The gearbox is sometimes the dominant source of noise in these machines.Even if the gear noise is not the loudest source, its pure high frequency tone is easily distinguished
19、from other noise sources and is often perceived as unpleasant. The noise creates an impression of poor quality. In order not to be heard, gear noise must be at least 15 dB lower than other noise sources, such as engine noise.1.2 Gear noiseThis dissertation deals with the kind of gearbox noise that i
20、s generated by gears under load.This noise is often referred to as “gear whine” and consists mainly of pure tones at high frequencies corresponding to the gear mesh frequency and multiples thereof, which are known as harmonics. A tone with the same frequency as the gear mesh frequency is designated
21、the gear mesh harmonic, a tone with a frequency twice the gear mesh frequency is designated the second harmonic, and so on. The term “gear mesh harmonics” refers to all multiples of the gear mesh frequency.Transmission error (TE) is considered an important excitation mechanism for gear whine. Welbou
22、rn 1 defines transmission error as “the difference between the actual position of the output gear and the position it would occupy if the gear drive were perfectly conjugate.” Transmission error may be expressed as angular displacement or as linear displacement at the pitch point. Transmission error
23、 is caused by deflections, geometric errors, and geometric modifications.In addition to gear whine, other possible noise-generating mechanisms in gearboxes include gear rattle from gears running against each other without load, and noise generated by bearings.In the case of automatic gearboxes, nois
24、e can also be generated by internal oil pumps and by clutches. None of these mechanisms are dealt with in this work, and from now on “gear noise” or “gearbox noise” refers to “gear whine”. MackAldener 2 describes the noise generation process from a gearbox as consisting of three parts: excitation, t
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械类 外文 翻译 变速箱 噪音 英语论文
限制150内