氧气瓶安全风险事故树分析.doc
《氧气瓶安全风险事故树分析.doc》由会员分享,可在线阅读,更多相关《氧气瓶安全风险事故树分析.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流氧气瓶安全风险事故树分析.精品文档.氧气瓶安全风险事故树分析摘要: 应用事故树分析方法对氧气瓶爆炸事故进行分析,找出了引发事故的基本原因和途径,分析了基本原因事件的结构重要度。由此提出了防止氧气瓶事故的方法,为氧气瓶的安全管理提供科学依据。关键词:氧气瓶;事故树;结构重要度;预防措施引言 随着近年来国民经济的高速发展,氧气的需求量随之增长,相应氧气瓶爆炸事故发生日益增多。虽然国家对此十分重视,相继出台了气瓶安全监察规程和气瓶安全监察规定等法规,但从目前现状来看,发生事故的趋势没有得到有效的扼制,死亡事故仍不断发生。为减少事故发生,保障人身财产
2、安全,文中拟用事故树分析法对氧气瓶的安全风险进行分析评价,找出事故原因,并制定出相应的对策措施,以期引起大家的重视,防患于未然。1事故树分析原理 事故树分析法(FTA)又称故障树分析,是一种逻辑演绎系统安全分析方法。20世纪60年代,由美国贝尔电话研究所首先提出,在20世纪80年代初引入我国。目前,FTA作为安全系统工程中一种进行安全分析、评价和事故预测的先进的科学方法,已得到国内外的公认和广泛应用,已成为定性和定量预测与预防事故的主要方法。事故树分析法以系统较易发生且后果严重的事故(即顶上事件)作为分析目标,通过调查与该事故有关的所有原因事件和各种因素,经过层层分析,逐级找出最终不能再分解的
3、直接原因事件(即基本事件)。将特定的事故和各层原因事件(危险因素)之间用逻辑门符号连接起来,得到形象、简洁的表达其逻辑关系(或称因果关系)的逻辑图形,即事故树图。通过对事故树简化、计算,求出最小割集、最小径集和基本事件结构重要度,进行事故树定性分析。在事故树中凡能导致顶上事件发生的基本事件的集合称作割集。能导致顶上事件发生的最低限度基本事件的集合称为最小割集。最小割集中全部基本事件均发生时,则顶上事件一定发生,而最小割集中任一基本事件不发生,顶上事件未必一定不会发生。最小割集表达了系统的危险性,每个最小割集都是顶上事件发生的一种可能渠道,最小割集的数目越多,系统越危险。最小径集又称最小通集。在
4、事故树中凡是不能导致顶上事件发生的最低限度的基本事件的集合,称为最小径集。最小径集中全部基本事件均不发生时,则顶上事件一定不会发生,而在最小径集中,任何一个基本事件发生,便不能保证一定不发生顶上事件。因此,最小径集表达了系统的安全性,每一个最小径集是预防顶上事件发生的有效途径之一,最小径集的数目越多,系统就越安全。结构重要度分析是分析基本事件对顶上事件影响程度,根据分析的结果,找出事故发生的主要原因,探明控制顶上事件发生的有效途径,确定安全对策措施,制定应急预案1。2氧气瓶性质及其使用2.1氧气的基本特性氧是强氧化性气体。与空气相比,燃爆性物质在氧气中的点火能量变小,燃烧速度变大,爆炸范围变宽
5、,即更易着火燃烧和爆炸。在一定条件下,一些金属在氧气中也能燃烧。压缩纯氧的压力越高,其助燃性能越强。在潮湿或有水条件下,氧气对钢材有强烈的腐蚀性。2.2氧气瓶及其附件气瓶本体:系管状无缝结构,上端瓶口处的缩颈部分为瓶颈,瓶颈与瓶体的过渡部分叫瓶肩,瓶颈外侧固定连接有颈圈。下端一般为凹形底。瓶体由优质锰钢、铬钼钢或其他合金钢制成。最常用的是中容积瓶,外径219mm,容积40L,高度约1.5mm,公称工作压力15Mpa,许用压力18Mpa。主要附件:1、瓶阀一般由铜材制成,抗燃,且不起静电及机械火花。其密封材料应有好的阻燃及密封性能。2、瓶帽保护瓶阀免受磕碰,通过螺纹与颈圈连接。瓶帽上一般有排气孔
6、或侧孔,以防瓶阀漏气使瓶帽承压。3、防震圈套于瓶体上的两个弹性橡胶圈,起减震和保护瓶体的作用。2.3氧气瓶的充装与运输氧气瓶充装时,要严防混装和超装,而混装造成的后果更为严重,常因混入可燃气体、油脂等而导致氧气瓶爆炸。氧气瓶充装前,应逐只进行检查,主要检查内容是:1、 气瓶的制造厂家是否具有气瓶制造许可证;2、 气瓶外表面的涂色是否是规定的淡酞蓝色;3、气瓶瓶阀的出口螺纹是否为右旋螺纹;4、气瓶内有无剩余压力,如有剩余压力则进行气体定性鉴别;5、气瓶内外表面有无裂纹、严重腐蚀、明显变形及其他严重外部损伤缺陷;6、气瓶是否在规定的检验期内;7、气瓶附件是否齐全及符合规定要求;8、瓶体、瓶阀等是否
7、沾染油脂或其他可燃物;9、瓶内是否有积水等。以上任一项发现问题,都不得允许气瓶充装,而须对气瓶进行处置。对应一定的充装温度,必须严格按规定的充装压力进行充装,确保在气瓶最高工作温度60度时瓶内压力不超过气瓶许用压力。气瓶运输装卸时,必须配戴好瓶帽、防震圈,轻装轻卸,严禁抛、滑、滚、碰;氧气瓶不得与可燃气体气瓶同车运输,也不得与任何易燃、易爆物质同车运输;夏季运输氧气瓶应避免爆晒。2.4氧气瓶的安全使用1、氧气瓶不得与可燃气体气瓶同室储存。氧气瓶储存室内严禁烟火。2、氧气的防止地点不得靠近热源和明火。采用氧乙炔火焰进行作业时,氧气瓶、溶解乙炔气瓶及焊(割)炬必须相互错开,氧气瓶与焊(割)炬明火的
8、距离应在10米以上。操作中应防止回火,避免在氧气管路中混入乙炔气体。不得用氧气吹扫乙炔管路。3、与氧气接触的零件不得沾染油污,使用这些零件前必须进行脱油脱脂处理。4、不得戴着沾有油脂的手套或带油裸手开启氧气瓶瓶阀和减压阀。5、 开启瓶阀和减压阀时,动作应缓慢,以减轻气流的冲击和摩擦,防止管路过热着火。6、 禁止用压缩纯氧进行通风换气或吹扫清理,禁止以压缩氧气代替压缩空气作为风动工具的动力源,以防引发燃爆事故。7、吸氧用氧人员及其近旁人员,必须禁绝抽烟及其他一切火源。8、用瓶单位和人员应防止瓶内积水及积存其他污物,防止气瓶腐蚀及其他损害,进而避免气瓶爆炸。用瓶单位应拒绝使用超过检验期的气瓶。9、
9、氧气瓶应戴好安全防护帽,坚直安放在固定的支架上,要采取防止日光曝晒的措施。10、氧气瓶里的氧气,不能全部用完,必须留有剩余压力,严防乙炔倒灌引起爆炸。尚有剩余压力的氧气瓶,应将阀门拧紧,注上“空瓶”标记。3、氧气瓶附件有缺损,阀门螺杆滑丝时,应停止使用。4、禁止用沾染油类的手和工具操作气瓶,以防引起爆炸。11、氧气瓶不能强烈碰撞。禁止采用抛、摔及其它容易引撞击的方法进行装卸或搬运。严禁用电磁起重机吊运。12、在开启瓶阀和减压器时,人要站在侧面;开启的速度要缓慢,防止有机材料零件温度过高或气流过快产生静电火花。而造成燃烧。13、冬天,气瓶的减压器和管系发生冻结时,严禁用火烘烤或使用铁器一类的东西
10、猛击气瓶,更不能猛拧减压表的调节螺丝,以防止氧气突然大量冲出,造成事故。8、氧气瓶不得靠近热源,与明火的距离一般不得小于10米。14、禁止使用没有减压器的氧气瓶。气瓶的减压器应有专业人员修理。3氧气瓶典型事故案例分析 3.1案例1 2000年9月15日8:00左右,中国石化集团公司第五建设公司南京分公司(简称五化建)一焊工进行切割工作时,氧气管爆炸,另有3处同时炸裂。切割时,该焊工感到气体不纯(切割线有漂移现象),但鉴于爆破的是旧氧气胶管,认为氧气胶管爆炸是其老化所致。由于未领到新氧气胶管而停止工作,同时将用气很少的满瓶氧气退回库房,对瓶内是否形成爆鸣性气体未产生怀疑。9月18日7:35,五化
11、建另一名焊工按照班长分工,从气瓶库取出一瓶氧气,装好焊割工具后,在距氧气瓶约35m处的预制厂内切割型钢的点焊,氧气瓶内压力约10MPa,低压约0.4MPa,约切割10min,感到气体不纯,切割线漂移。8:05左右,氧气瓶突然爆炸,并升起一股灰尘2。分析:在气瓶管理中,大部分气体充装站的气瓶都实行“大循环”,充装工违反了气瓶安全监察规程中的有关规定,未在气瓶充装前对气瓶内的气体进行检验判别,导致气瓶内气体不纯,遇火即发生化学性爆炸。且对助燃与可燃气体,不宜采用橡胶软管,应用高压金属软管。3.2案例22002年5月30日19:55,徐州市工程集团某机械厂下料车间,氧气汇流排中一只即将开启使用的氧气
12、瓶发生燃烧击穿事故,造成一死一伤的严重后果3。 分析:这次燃割事故为操作者打开瓶阀时产生的静电火花或摩擦热量,通过橡胶金属软管内壁时,剧烈的冲击摩擦瞬间产生极高的热量,点燃了管道上的可燃物橡胶软管。已燃烧的橡颗粒被高流量、高纯氧、高热量的气体压人瓶内,在高纯氧的作用下产生激烈燃烧,喷出的气体将瓶阀、瓶肩熔穿,能量瞬间释放,否则气瓶爆炸后果更加严重。在高压氧的作用下,选用易燃的橡胶金属软管和操作者的不当操作开启过急,是造成这次事故的主要原因。在高压氧的状态下,主管道及其连接导管,一定要严格选取材料,不可使用可燃材料,橡胶金属软管绝对不能在高压氧的状态下使用,主管道最好选用铜材或紫铜材。在高压状态
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 氧气瓶 安全 风险 事故 分析
限制150内