晶体结构及性质练习题第一套.doc
《晶体结构及性质练习题第一套.doc》由会员分享,可在线阅读,更多相关《晶体结构及性质练习题第一套.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流晶体结构及性质练习题第一套晶体结构与性质一、知识回顾1、晶体类型判别:分子晶体:大部分有机物、几乎所有酸、大多数非金属单质、所有非金属氢化物、部分非金属氧化物。原子晶体:仅有几种,晶体硼、晶体硅、晶体锗、金刚石、金刚砂(SiC)、氮化硅(Si3N4)、氮化硼(BN)、二氧化硅(SiO2)、氧化铝(Al2O3)、石英等;金属晶体:金属单质、合金;离子晶体:含离子键的物质,多数碱、大部分盐、多数金属氧化物;分子晶体、原子晶体、金属晶体、离子晶体对比表晶体类型分子晶体原子晶体金属晶体离子晶体定 义分子通过分子间作用力形成的晶体相邻原子间通过共价键形
2、成的立体网状结构的晶体金属原子通过金属键形成的晶体阴、阳离子通过离子键形成的晶体组成晶体的粒子分 子原 子金属阳离子和自由电子阳离子和阴离子组成晶体粒子间的相互作用范德华力或氢键共价键金属键(没有饱和性方向性)离子键(没有饱和性方向性)典型实例冰(H2O)、P4、I2、干冰(CO2)、S8金刚石、晶体硅、SiO2、SiC Na、Mg、Al、FeNaOH、NaCl、K2SO4特征熔点、沸点熔、沸点较低熔、沸点高 一般较高、部分较低熔、沸点较高导热性不 良不 良良 好不 良导电性差,有些溶于水可导电多数差良 好固态不导电,熔化或溶于水能导电机械加工性能不 良不 良良 好不 良硬 度硬度较小高硬度一
3、般较高、部分较低略硬而脆溶解性相似相溶不 溶不溶,但有的反应多数溶于水,难溶于有机溶剂3、不同晶体的熔沸点由不同因素决定:离子晶体的熔沸点主要由离子半径和离子所带电荷数(离子键强弱)决定,分子晶体的熔沸点主要由相对分子质量的大小决定,原子晶体的熔沸点主要由晶体中共价键的强弱决定,且共价键越强,熔点越高。4、金属熔沸点高低的比较: (1)同周期金属单质,从左到右(如Na、Mg、Al)熔沸点升高。 (2)同主族金属单质,从上到下(如碱金属)熔沸点降低。 (3)合金的熔沸点比其各成分金属的熔沸点低。 (4)金属晶体熔点差别很大,如汞常温为液体,熔点很低(-38.9),而铁等金属熔点很高(1535)。
4、5、原子晶体的熔点不一定都比金属晶体的高,如金属钨的熔点就高于一般的原子晶体。6、分子晶体的熔点不一定就比金属晶体的低,如汞常温下是液体,熔点很低。7、判断晶体类型的主要依据? 一看构成晶体的粒子(分子、原子、离子);二看粒子间的相互作用;另外,分子晶体熔化时,化学键并未发生改变,如冰水。8、化学变化过程一定发生就化学键的断裂和新化学键的形成,但破坏化学键或形成化学键的过程却不一定发生化学变化,如食盐的熔化会破坏离子键,食盐结晶过程会形成离子键,但均不是化学变化过程。9、判断晶体类型的方法?(1)依据组成晶体的微粒和微粒间的相互作用判断 离子晶体的构成微粒是阴、阳离子,微粒间的作用力是离子键。
5、 原子晶体的构成微粒是原子,微粒间的作用力是共价键。 分子晶体的构成微粒是分子,微粒间的作用力是分子间作用力。 金属晶体的构成微粒是金属阳离子和自由电子,微粒间的作用力是金属键。(2)依据物质的分类判断 金属氧化物(如K2O、Na2O2等)、强碱(如NaOH、KOH等)和绝大多数的盐类是离子晶体。 大多数非金属单质(除金刚石、石墨、晶体硅、晶体硼外)、气态氢化物、非金属氧化物(除SiO2外)、酸、绝大多数有机物(除有机盐外)是分子晶体。 常见的原子晶体单质有金刚石、晶体硅、晶体硼等,常见的原子晶体化合物有碳化硅、二氧化硅等。 金属单质(除汞外)与合金是金属晶体。(3)依据晶体的熔点判断 离子晶
6、体的熔点较高,常在数百至一千摄氏度。 原子晶体的熔点高,常在一千至几千摄氏度。 分子晶体的熔点低,常在数百摄氏度以下至很低温度。 金属晶体多数熔点高,但也有相当低的。(4)依据导电性判断 离子晶体的水溶液及熔化时能导电。 原子晶体一般为非导体。 分子晶体为非导体,而分子晶体中的电解质溶于水,使分子内的化学键断裂形成自由离子也能导电。 金属晶体是电的良导体。(5)依据硬度和机械性能判断 离子晶体硬度较大或较硬、脆。 原子晶体硬度大。 分子晶体硬度小且较脆。 金属晶体多数硬度大,但也有较小的,且具有延展性。(6)判断晶体的类型也可以根据物质的物理性质: 在常温下呈气态或液态的物质,其晶体应属于分子
7、晶体(Hg除外),如H2O、H2等。对于稀有气体,虽然构成物质的微粒为原子,但应看作单原子分子,因为微粒间的相互作用力是范德华力,而非共价键。 固态不导电,在熔融状态下能导电的晶体(化合物)是离子晶体。如:NaCl熔融后电离出Na+和Cl,能自由移动,所以能导电。 有较高的熔、沸点,硬度大,并且难溶于水的物质大多为原子晶体,如晶体硅、二氧化硅、金刚石等。 易升华的物质大多为分子晶体。 熔点在一千摄氏度以下无原子晶体。 熔点低,能溶于有机溶剂的晶体是分子晶体。10、晶体熔沸点高低的判断? (1)不同类型晶体的熔沸点:原子晶体离子晶体分子晶体;金属晶体(除少数外)分子晶体;金属晶体熔沸点有的很高,
8、如钨,有的很低,如汞(常温下是液体)。 (2)同类型晶体的熔沸点: 原子晶体:结构相似,半径越小,键长越短,键能越大,熔沸点越高。如金刚石氮化硅晶体硅。 分子晶体:组成和结构相似的分子,相对分子质量越大,分子间作用力越强,晶体熔沸点越高。如CI4CBr4CCl4CF4。 若相对分子质量相同,如互为同分异构体,一般支链数越多,熔沸点越低,特殊情况下分子越对称,则熔沸点越高。 若分子间有氢键,则分子间作用力比结构相似的同类晶体强,故熔沸点特别高。 金属晶体:所带电荷数越大,原子半径越小,则金属键越强,熔沸点越高。如AlMgNaK。 离子晶体:离子所带电荷越多,半径越小,离子键越强,熔沸点越高。如K
9、FKClKBrKI。11、Na2O2的阴离子为O22-,阳离子为Na+,故晶体中阴、阳离子的个数比为1:2。12、离子晶体中,阴、阳离子采用不等径密圆球的堆积方式。13、分子的稳定性是由分子中原子间化学键的强弱决定。14、冰是分子晶体,冰融化时破坏了分子间作用力和部分氢键,化学键并未被破坏。15、离子晶体熔化时,离子键被破坏而电离产生自由移动的阴阳离子而导电,这是离子晶体的特征。16、 离子晶体不一定都含有金属元素,如NH4Cl 离子晶体中除含离子键外,还可能含有其他化学键,如NaOH、Na2O2 金属元素与非金属元素构成的晶体不一定是离子晶体,如AlCl3是分子晶体。17、 溶于水能导电的不
10、一定是离子晶体,如HCl等 熔化后能导电的晶体不一定是离子晶体,如Si、石墨、金属等。典型题例2食盐晶体如右图所示。在晶体中, 表示Na+,o 表示Cl-。已知食盐的密度为r g / cm3,NaCl摩尔质量M g / mol,阿伏加德罗常数为N,则在食盐晶体里Na+和Cl-的间距大约是A. cm B. cm C. cm D. cm 3. 下列各项所述的数字不是6的是 A在NaCl晶体中,与一个Na+最近的且距离相等的Cl-的个数 B在金刚石晶体中,最小的环上的碳原子个数 C在二氧化硅晶体中,最小的环上的原子个数 D在石墨晶体的片层结构中,最小的环上的碳原子个数 5.现有四种晶体,其离子排列方
11、式如图所示,其中化学式不属AB型的是A B C DBa2+1. 钡在氧气中燃烧时的得到一种钡的氧化物晶体,起结构如下图所示,有关说法正确的是 A.该晶体属于离子晶体B.晶体的化学式为Ba2O2 C.该晶体晶胞结构与CsCl相似D.与每个Ba2+距离相等且最近的Ba2+共有12个2. 据报道,某种合金材料有较大的储氢容量,其晶体结构的最小单元如右图所示。则这种合金的化学式为ALaNi6 BLaNi3 CLaNi4 DLaNi54、某离子晶体中晶体结构最小的重复单元如图:A为阴离子,在正方体内,B为阳离子,分别在顶点和面心,则该晶体的化学式为AB2ABBA2CB7A4DB4A75、高温下,超氧化钾
12、(KO2)晶体结构与NaCl相似,其晶体结构的一个基本重复单元如右图所示,已知晶体中氧的化合价可看作部分为0价,部分为2价。则下列说法正确的是 A晶体中,0价氧原子与-2价氧原子的数目比为1:1B晶体中每个K+周围有8个O2,每个O2周围有8个K+C超氧化钾晶体中阳离子与阴离子的个数比为1:2D晶体中与每个K+距离最近的K+有12个6、石墨是层状晶体,每一层内,碳原子排列成正六边形,许多个正六边形排列成平面网状结构。如果每两个相邻碳原子间可以形成一个碳碳单键,则石墨晶体中每一层碳原子数与碳碳单键数的比是 ( ) A11 B12 C13 D237、某离子化合物的晶体中,最小重复单元及其八分之一结
13、构单元如图所示,具有该晶体结构的化合物可能是 ( )ACaF2BCO2CNaClDCsCl8、下列各组物质中,按熔沸点由高到低的顺序排列正确的是( )AO2、I2、Hg BCl2、KCl、SiO2 CRb、K、Na DSiC、NaCl、SO2二、晶体中距离最近的微粒数的计算:例1:在氯化钠晶体(图1)中,与氯离子距离最近的钠离子有 个;与氯离子距离最近的氯离子有 个。例2:二氧化碳晶体中,与二氧化碳分子距离最近的二氧化碳分子有 个。 从上题的解答方法可以看出,要计算出晶胞中微粒的实际数目,同样要有以晶胞为核心向 空间扩展形成晶体的意识,要分析晶胞中不同位置的微粒被晶胞共用的情况,若一个微粒被n
14、个晶胞所共用,则该微粒对晶胞的贡献为。用乘以对应的微粒数,再加和即得晶体中的实际微粒数。根据上述方法还能确定晶体的化学式。 例4: 写出下列离子晶体的化学式三晶体中化学键数目的计算例5:金刚石结构中,一个碳原子与 个碳原子成键,则每个碳原子实际形成的化学键为 根;a mol金刚石中,碳碳键数为 mol。例7:C60分子是形如球状的多面体,如图6,该结构的建立是基于如下考虑:C60分子中每个碳原子只跟相邻的3个碳原子形成化学键C60分子只含有五边形和六边形。C70分子也可制得,它的分子模型可以与C60同样考虑而推知。通过计算确定C70分子中五边形和六边形数。四综合计算例8:(99年全国高考题)中
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 晶体结构 性质 练习题 第一
限制150内