机械设计基础第三章凸轮机构.doc
《机械设计基础第三章凸轮机构.doc》由会员分享,可在线阅读,更多相关《机械设计基础第三章凸轮机构.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流机械设计基础第三章凸轮机构.精品文档.学习要点:1.了解凸轮机构的应用和分类;2.熟悉从动件常用的运动规律 ;3.掌握图解法设计盘形凸轮轮廓曲线 ;4.掌握凸轮机构基本尺寸的确定。第3章 凸轮机构3-1 凸轮机构的应用与分类一、 凸轮机构的应用与特点凸轮机构广泛应用于各种自动机械和自动控制装置中。如图3-1所示的内燃机配气机构,凸轮1是向径变化的盘形构件,当它匀速转动时,导致气阀的推杆2在固定套筒3内上下移动,使推杆2按预期的运动规律开启或关闭气阀(关闭靠弹簧的作用),使燃气准时进入气缸或废气准时排出气缸。如图3-2所示的自动送料机构,构件1
2、是带沟槽的凸轮,当其匀速转动时,迫使嵌在其沟槽内的送料杆2作往复的左右移动,达到送料的目的。如图3-3图3-1 内燃机配气机构 图3-2 自动送料凸轮机构所示,构件1是具有曲线轮廓且只能作相对往复直线运动的凸轮,当刀架3水平移动时,凸轮1的轮廓使从动件2带动刀头按相同的轨迹移动,从而切出与凸轮轮廓相同的旋转曲面。由上可知,凸轮是具有某种曲线轮廓或凹槽的构件,一般作连续匀速转动或移动,通过高副接触使从动件作连续或不连续的预期运动。凸轮机构通常由凸轮、从动件和机架组成。从动件的运动规律由凸轮的轮廓或沟槽的形状决定。所以只需设计合适的凸轮轮廓曲线,即可得到任意预期的运动规律,且凸轮机构简单紧凑,这就
3、是凸轮机构广泛应用的优点。但是凸轮与从动件之间的接触是高副,易于磨损,所以常用于传力不大的控制机构。二、凸轮机构的分类凸轮的类型很多,常按以下三种方法来分类:1按凸轮的形状来分(1)盘形凸轮(图3-1) 凸轮绕固定轴心转动且向径是变化的,其从动件在垂直于凸轮轴的平面内运动。是最常用的基本形型式。(2)移动凸轮(图3-3) 凸轮作往复直线移动,它可看作是轴心在无穷远处的盘形凸轮。(3)圆柱凸轮(图3-2) 凸轮是在圆柱上开曲线凹槽,或在圆柱端面上做出曲线轮廓的构件。盘形凸轮和移动凸轮与从动件之间的相对运动都是平面运动,属于平面凸轮机构。圆柱凸轮与从动件之间的运动是空间运动,属于空间凸轮机构。2按
4、从动件的形状来分图3-4 从动件的形状(1)尖顶从动件 如图3-4a所示,该从动件结构简单,尖顶能与任意复杂的凸轮轮廓保持接触,可实现从动件的任意运动规律。但尖顶易磨损,所以只适用于作用力很小的低速凸轮机构,如仪表机构中。(2)滚子从动件 如图3-4b所示,该从动件的端部装有可自由转动的滚子,使其与凸轮间为滚动摩擦,可减少摩擦和磨损,能传递较大的动力,应用广泛。但结构复杂,端部质量较大,所以不宜用于高速场合。(3)平底从动件 如图3-4c所示,若不考虑摩擦,凸轮对从动件的作用力始终垂直于3-5 形封闭凸轮结构平底,传动效率最高,且平底与凸轮轮廓间易形成油膜,有利于润滑,所以可用于高速场合。但是
5、平底不能用于有内凹曲线或直线的凸轮轮廓的凸轮机构。3按凸轮与从动件保持接触(称为封闭)的方式来分(1)力封闭 如图3-1和图3-4所示,分别依靠弹簧力和重力使从动件和凸轮始终保持接触。(2)形封闭 如图3-5a所示,凸轮上加工有沟槽,从动件的滚子嵌在其中,保证凸轮与从动件始终接触。如图3-5b所示,利用凸轮和从动件的特殊几何结构保证凸轮与从动件以一定值始终接触。3-2 从动件常用的运动规律一、 凸轮机构运动过程及有关名称图3-6 凸轮机构的运动过程图3-6所示为一对心直动尖顶从动件盘形凸轮机构。以凸轮轴心O为圆心,凸轮轮廓最小向径为半径所作的圆称为凸轮的基圆,其半径称为基圆半径,用r0表示。通
6、常取基圆与轮廓的连接点A为凸轮轮廓曲线的起始点。从动件与轮廓在A点接触时,它距轴心O最近。当凸轮顺时针方向转动时,轮廓上的点依次与从动件的顶尖接触。由于AB段的向径值是逐渐增大的,所以导致从动件逐渐原理凸轮轴心O,当转到最大向径OB位置时,从动件运动到B最高位置(即距固定轴心O最远位置),这一运动过程称为推程,相对应转过的角度AOB为推程运动角,用0表示,这时从动件移动的距离为升程,用h表示。当凸轮继续回转,以O为圆心的圆弧BC上的点依次与从动件接触,由于向径不变,所以从动件处于最远位置静止不动,所对应的角度BOC为远休止角,用s表示。当凸轮继续回转,轮廓CD段与从动件接触,由于CD段向径是逐
7、渐减小的,所以从动件从最远位置逐渐回到最初位置,这一运动过程称为回程,对应所转过的角度COD称为回程运动角,用h表示。凸轮继续回转,基圆上的圆弧DA段与从动件接触,从动件在距轴心最近位置静止不动,对应转过的角度DOA为近运动角,用s表示。当凸轮连续回转时,从动件将重复进行升停降停的运动循环。通过上述分析可知,从动件的运动规律取决于凸轮轮廓曲线的形状,也就是说,从动件的不同运动规律要求凸轮具有不同的轮廓曲线。所以设计凸轮轮廓曲线时,首先根据适应工作要求选定的从动件的运动规律,得出相应的轮廓曲线。从动件的运动规律就是从动件的位移(s)、速度(v)和加速度(a)随时间(t)变化的规律。通常凸轮作匀速
8、转动,其转角与时间t成正比(wt),所以从动件的运动规律也可用从动件的运动参数随凸轮转角的变化规律来表示。下面介绍几种常用的从动件运动规律。二、从动件的常用运动规律1等速运动规律从动件运动的速度为常数时的运动规律,称为等速运动规律。推程时,凸轮以等角速度w转动,经过t0时间,凸轮转过的推程运动角为0,从动件等速完成的升程为h。从动件的位移s与凸轮转角成正比,其位移曲线为一过原点的倾斜直线,如图3-7所示。根据位移s、速度v、加速度a之间的导数关系,经推导整理得从动件推程的运动方程式: (3-1a) 回程时,凸轮以等角速度w转动,经过t0时间,凸轮转过的回程运动角为h,而从动件等速下降h。同理可
9、得从动件回程的运动方程式: (3-1b)由图3-7可知,从动件在运动开始的瞬间,速度由0突变为,则加速度a为+。同理在推程终止的瞬间,速度由突变为0,则加速度a为。在这两个位置,由加速度引起的惯性力在理论上为无穷大。而实际上,由于材料的弹性变形,加速度和惯性力不会达到无穷大,但是会引起强烈的冲击,这种冲击称为刚性冲击。因此等速运动规律只适用于低速轻载的凸轮机构。2等加速等减速运动规律等加速等减速运动规律是指从动件在一个行程中,前半行程作等加速运动,后半行程作等减速运动,且等加速度与等减速度的绝对值相等。在等加速度段,从动件速度由0加速到,在等减速度段,从动件速度由减速到0,所用的时间相等,各为
10、t0/2,且所完成的位移也相同,各为h/2,凸轮以w匀速转动的转角也各为0/2。经推导整理得推程从动件运动方程为:前半推程: (3-2a)后半推程: (3-2b)同理可得回程时从动件得运动方程:(等加速段) (等减速段) (3-3)根据式(3-2a)和(3-2b)可得到从动件的运动曲线,如图3-8所示。由图可知,速度曲线是连续的,无突变,故不会产生刚性冲击。但是在推程开始、结束和由等加速过渡到等减速的瞬间,加速度出现有限值的突变,这将产生有限惯性力的突变而引起冲击,这种冲击称为柔性冲击。它比刚性冲击要小得多。所以一般用于中、低速凸轮机构。用图解法设计凸轮轮廓时,通常需要绘制从动件的位移曲线。等
11、加速等减速运动规律位移曲线是一凹一凸两段抛物线连接的曲线,其绘制方法如下:由于()可知,若将转角0/2分成若干等分,则位移的比值为1:4:9:.。如图3-8a所示,在横坐标轴上将转角0/2线段分成若干等分(图中为3等分),得1、2、3各点,过这些点作横轴的垂线。再过点O作任意的斜线OO,在其上以适当的单位长度从点O按1:4:9量取对应长度,得1、4、9各点。连接直线9-,并分别过4和1两点作其平行线4-2和1-1,分别与S轴相交于2、1点。最后由1、2、3点分别向过1、2、3各点的垂线投影,得1、2、3点,将这些点连接成光滑的曲线,即为等加速段的抛物线。用同样的方法可得等减速段的抛物线。3简谐
12、(余弦加速度)运动规律质点在圆周上作等速运动时,它在这个圆直径上的投影所构成的运动称为简谐运动。从动件作简谐运动时,其加速度是按余弦规律变化的,所以该运动规律称为余弦加速度运动规律,也称为简谐运动规律。图3-7 等速运动 图3-8 等加速等减速运动在推程阶段,从动件的运动方程为: (3-5a)在回程阶段,从动件的运动方程为: (3-5b)按式(3-5a)作出简谐运动的运动曲线,如图3-9所示。由图可知,从动件在运动的始末两位置加速度有突变,所以也会引起柔性冲击,因此在一般情况下只适用于中速凸轮机构。需注意的是:当从动件作升降升运动循环时,且在推程和回程中都采用简谐运动规律,则可得到连续的加速度
13、曲线,这种情况将无刚性冲击也无柔性冲击,所以可用于高速凸轮机构中。简谐运动规律位移曲线图作法如下(如图3-9a):以从动件的升程h为直径作一半圆,将凸轮运动转角0分成若干等分(图中为8等分),同样把半圆分成和0相同的等分数,分别得到1,2,3点和1,点,过1,2,3,点作垂线11,然后将圆上的等分点投影到相应的垂线上得,点。用光滑曲线连接这些点,即得到从动件的位移曲线。图3-9 简谐运动以上是以直动从动件盘形凸轮机构为例,介绍了几种从动件常用的运动规律。它同样适用于摆动从动件盘形凸轮机构,其位移方程式中以摆动从动件的角位移代替直动从动件的直线位移s,以摆动的最大摆角max代替直动从动件的行程h
14、。在工程上,除了上述几种常见运动规律外,为避免冲击,还可应用正弦加速度,高次多项式等运动规律,或者将几种曲线组合起来应用。在选择从动件的运动规律时,除考虑刚性冲击和柔性冲击外,还应注意各种运动规律的最大速度vmax和最大加速度amax的影响。vmax越大,则动量越大,当动量较大的从动件突然启动或停止时会产生较大的冲击,所以质量大的从动件不宜选用vmax太大的运动规律。最大加速度将使从动件产生很大的惯性力,而由其引起的动压力,将影响机构零件的强度和运动副的磨损。因此高速运动的凸轮机构,从动件的amax不宜太大。3-3 图解法设计盘形凸轮轮廓曲线一、 反转法原理凸轮机构的型式很多,从动件的运动规律
15、也各不相同,但用图解法设计凸轮轮廓曲线时,所依据的基本原理基本相同。图3-10 反转法原理图3-10所示一对心直动尖顶从动件盘形凸轮机构。凸轮以角速度w1绕其固定轴心O回转时,从动件的顶尖沿凸轮轮廓曲线相对其导路按预定的运动规律移动。假设给整个凸轮机构加一个绕轴心O回转的公共角速度w1,根据相对运动原理,凸轮与从动件之间的相对运动关系不变。但是此时,凸轮将静止不动,而从动件一方面以给定的运动规律在其导路内作相对移动,另一方面将随道路一起以角速度(w)绕固定轴心O回转。由于从动件的尖顶始终与凸轮轮廓相接触,所以,从动件在这种复合运动中,其尖顶的运动轨迹即是凸轮轮廓曲线。这种以凸轮作动参考系,按相
16、对运动原理设计凸轮轮廓曲线的方法称为“反转法”。同理,若为滚子从动件凸轮机构,从动件在这种复合运动中,滚子的轨迹将形成一个圆族,而该凸轮轮廓曲线为与此圆族相切的曲线,即此圆族的包络线。若为平底从动件的凸轮机构,如图所示,则从动件的复合运动中,其平底的轨迹将形成一个直线族,而凸轮轮廓曲线即为该直线族的包络线。下面介绍运用“反转法”绘制盘形凸轮轮廓曲线的步骤。二、对心直动尖顶从动件盘形凸轮轮廓曲线的设计在该凸轮机构中,凸轮以等角速度w逆时针转动,凸轮基圆半径r0,从动件的运动规律是:当凸轮转过推程运动角0时,从动件等速上升距离h;凸轮转过远休止角s,从动件在最高位置停留不懂;凸轮继续转过回程运动角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械设计 基础 第三 凸轮 机构
限制150内