《桩基试验.doc》由会员分享,可在线阅读,更多相关《桩基试验.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流桩基试验.精品文档.桩基静载试验技术的发展现状与展望摘要:概述了我国桩基静载测试工作的发展历程,对桩基静载测试技术做了简要介绍,同时展望了桩基静载测试工作的发展前景。关键词:桩,承载力Abstract: This paper is trying to gave a general review on the chinese static_load test of pile,some experiences and formulae have been introduced,and look into the future developmen
2、t for static_load test of pile.Key words: pile,bearing capacity一、 前言桩基静载试验是一项方法成立,理论上无可争议的桩基检测技术。在确定单桩极限承载力方面,它是目前最为准确、可靠的检验方法,判定某种动载检验方法是否成熟,均以静载试验成果的对比误差大小为依据。因此,每种地基基础设计处理规范都把单桩静载试验列入首要位置。一般情况下,桩基静载试验的成果数据,如单桩承载力、沉降量等均认为是准确、可靠的,这已为无数的工程实例证明。二、 我国静载试验的发展桩基静载测试技术是随着桩基础在建筑设计中的使用越来越广泛而发展起来的。新中国成立以前,在
3、国内基本上没有桩基静载测试技术的发展,新中国成立以后,桩基静载测试技术才逐步发展起来,就拿西南边陲省份云南来讲,50年代末和60年代初,就有了在预制桩上进行的静载试验,单因为桩基础的使用量很少,故试验的数量也少。进入到80年代以后,随着改革开放的深入,基本建设规模的逐年加大,特别是灌注桩在工程上的广泛应用,我国的桩基静载测试技术也进入了一个全新的发展时期。1、测试理论的发展桩基测试技术理论的发展本身促进了桩土荷载传递机理理论的研究,而这一直是国内外岩土工程界研究的热点,在这方面我国的学者也通过试验研究发表了许多自己的理论方法。我国的沈保汉分析了大量的为测试位移和应力数据而埋有实测元件的试桩资料
4、,结果表明:(1)SQ法的极限荷载是桩侧摩阻力得到充分发挥时的荷载,相应于极限荷载时的极限桩顶下沉量Su(即桩土间相对位移量)与桩的类型、桩径和施工方法等有关;对于同一施工类型的桩,一般说来,按摩擦桩、端承摩擦桩和摩擦端承桩的顺序排列,Su依次增大;(2)大直径钻孔桩的Su值比小直径钻孔桩的Su值大;(3)打入式预制桩和钻孔灌注桩的Su也有较大差别(4)施工工艺和施工质量对钻孔桩的极限荷载Qu和极限桩顶下沉量Su有较大影响。在桩的破坏模式研究方面,赵明华认为应分为三种模式,即:屈曲破坏、整体剪切破坏、刺入破坏;沈保汉认为应分为四种模式,即:端承摩擦桩的整体剪切破坏、摩擦桩的整体剪切破坏、摩擦端
5、承桩的刺入剪切破坏、端承桩的屈曲破坏。在依靠桩的下沉量确定桩的极限承载力方面,我国建筑地基基础设计规范(GBJ789)规定:当Qs曲线无明显的拐点时,可取桩顶总沉降量为40时相应的荷载值为单桩极限承载力;建筑桩基技术规范(JGJ9494)规定:对于缓变型Qs曲线一般可取s4060mm对应的荷载,对大直径桩可取s0.030.06D(D为桩端直径,大桩径取低值,小桩径取高值)所对应的荷载值;对于细长桩(l/d80)可取s6080mm对应的荷载。沈保汉建议,对直径为0.3m0.5m的打套管成孔灌注桩可采用桩顶下沉量为桩径的10所对应的荷载为极限荷载;对于钻孔扩底灌注桩可取桩顶下沉量为扩大头直径7所对
6、应的荷载为极限荷载。在判定桩的屈服荷载方面我国的牛冬生和沈保汉建议按试验数据的数学特征来确定Qs曲线上的屈服荷载,其解法如下:A 求某级荷载Q下的Qs曲线斜率KB 求K的二阶导数C 绘制折线连接图,在此图上,每级荷载的数学特征极为明显,如图1所示,B的荷载接近SlgQ曲线的极限荷载Qu,而峰值A的荷载相应于QS曲线上的屈服荷载Qy。图1 法在极限承载力的预估计算方面我国陈宗岳在1978年按最小曲率半径导得的Qu式为:赵明华更提出了调整双曲线法预估计算极限承载力,公式为:随着各种预测理论的研究,我国有学者提出了灰色预测理论预估极限承载力。灰色预测理论是近二十年才发展起来一种新理论。目前,它己广泛
7、地应用于工业、农业、能源、交通、社会科学等诸多领域,最近几年,已有不少人将这一理论应用于岩土工程,并取得了明显的效果。利用这种方法,可以通过载荷试验的部分己知数据对不同沉降时相应的桩身荷载值进行预测。该方法的基本原理是以一组完全的单桩竖向抗压静载荷试验Qs曲线为基础,取该曲线的前几级荷载下沉降原始数据进行分析,进而对Qs曲线的发展趋势作出预测。考虑到一般静载荷试验做到破坏时的加荷级数为1015级。故一般取前10级建立相应的GM(1,1)模型进行预测。预测所选用的级数少,经济效益越明显:预测时所选用的级数多,预测精度会有所提高,但当级数过多时,就失去了预测的意义。灰色预测方法对于以沉降控制来确定
8、承载力的大直径桩、超长桩和嵌岩桩效果明显。以第k级荷载下的沉降量S(k)为一个数据,可以得到一组数据序列S,S=(S(1),S(2),S(k)。将S进行累加生成可得到另外一组数据,S=(S(1),S(2),S(k)。其中,其中S(k)为第k级荷载作用下的累加沉降量。对于等量加荷试验,可对S(k)建立如下的GM(1,1)预测模型:式中 、u待定系数;由最小二乘法,可有下式得到待定系数、u:式中 则 这样我们就可以得到不同荷载下响应的沉降量,进而就可以确定对应沉降下单桩的竖向抗压承载力值。2、测试实践的发展在桩基静载测试技术的起步阶段,由于设计单桩的承载力较低,所以现场用来试验的设备也相对简单。在
9、早期的试验过程中,提供反力的配重并不是一下子全部预先加上的,而是根据试验的进度,将配重逐渐加上。随着现场测试技术的发展,配重物由石块、水箱发展到了砂袋、砼预制块等;反力装置也由堆重平台装置发展到了锚桩反力装置、堆重锚桩联合装置等;加载设备也由直接将配重物堆放在试桩桩头上,发展为使用千斤顶提供反作用力,加压泵由手动发展为了电动;观测用的量测表也由机械式百分表发展为大量程、高精度的电子位移计。在测试方法上,我国大部分的检测规范(规定)都制定的是“慢速维持荷载法”,具体作法是按一定要求将荷载分级加到桩上,在桩下沉未达到某一规定的相对稳定标准前,该级荷载维持不变;当达到稳定标准时,继续加下一级荷载;当
10、达到规定的终止试验条件时终止加载;然后在分级卸载到零。试验周期一般为37天。建筑地基基础设计规范(GBJ7-89)和建筑桩基技术规范(JGJ9494)都提供了该试桩方法。但有关试桩入土后的间隔时间、分级标准、测读下沉量间隔时间、试验终止条件以及卸载规定等项目,各规范和标准的规定不尽相同。建筑桩基技术规范(JGJ9494)规定:每级加载为预估极限的1/101/15,第一级可按2倍分级荷载加荷。每级加载后间隔5、10、15min各测读一次,以后每隔15min测读一次,累计1h以后每隔30min测读一次。每次测读值计入试验记录表。每一小时的沉降不超过0.1mm,并连续出现两次(由1.5h内连续三次观
11、测值计算),认为已达到相对稳定,可加一级荷载。在上海市等地区和某些港口工程等也有使用多循环加卸载试验法,此方法国外用的较为广泛,它主要是对每一级荷载进行重复加载卸载循环。建筑桩基技术规范(JGJ9494)中提到“当考虑结合实际工程桩的荷载特征可采用多循环加、卸载法(每级荷载达到相对稳定后卸载到零)”,冶金工业部部标准YBJ 23691中也写入了此种加载方法“多次循环回零加载法”。快速维持荷载法在加载试验的过程中,不要求观测桩顶下沉的相对稳定,而以等时间间隔连续加载,所测得的下沉仅为桩周土的瞬时下沉。与慢速维持荷载法相比,测得的下沉不受时间影响,整个试验持续时间只需几个小时。有关试验加载分级数、
12、测读下沉量间隔时间、试验终止条件以及卸载等规定,各规范和标准的规定不尽相同。建筑桩基技术规范(JGJ9494)中认为,“当考虑缩短试验时间,对于工程桩的检验性试验,可采用快速维持荷载法,即一般每隔一个小时加一级荷载。” 冶金工业部部标准YBJ 23691中对快速试桩法的描述为“每级加载维持一小时,保持荷载稳定,每级加载的桩顶沉降测读时间与慢速加载法第一小时测读时间相同”,在建筑工程基桩检测技术规范(征求意见稿2000)中明确提了出来,对于施工后的工程桩验收检测,当有成熟的地区经验时,可采取快速维持荷载法。试验步骤为:A、每级荷载加载后维持1h,按5、10、15、30、45、60min测读桩顶沉
13、降量,即可施加下一级荷载;对于最后一级荷载,加载后沉降测读方法及稳定标准按慢速荷载法执行;B、卸载时每级荷载维持15min,测读时间为第5、15min,即可卸下一级荷载。卸载至零后应测读稳定的残余沉降量,维持时间为2h,测读时间为5、15、30min,以后每隔30min测读一次。快速维持荷载法的基本依据是快速加载下得到的极限荷载乘以某各修正系数后,可转换成慢速加载时的极限荷载;在设计荷载下,慢速维持荷载法和快速维持荷载法的桩顶下沉量相差不大,有文章认为在5%以内。大量试桩资料分析表明:快速维持荷载法所得的单桩承载力比慢速维持荷载法高。在上海地区,快速维持荷载法所得的单桩承载力比慢速维持荷载法高
14、一级加荷增量左右,而下沉量要偏小百分之十几。慢速维持荷载法试验时间较长,且不易予估;快速维持荷载法试验时间较短,且易予估。随着高层建筑以及桥梁工程建设的增多,大承载力的混凝土灌注桩得到了广泛的应用,由此而引起的试验手段上的困难所造成的承载力试验无法准确完成的事实越来越引起了人们的注意。在桩基大承载力的测试理论和测试方法研究上,国内外都是近几年刚刚起步。美国在80年代中期开展了桩承载力自平衡试验方法的研究,国内近几年也开展了此方法的理论研究和现场实践。东南大学土木学院于1996年将该方法用于现场实践,取得了良好的社会效益和经济效益。桩承载力自平衡试验方法是在桩端附近安装荷载箱,荷载箱由活塞、顶盖
15、、底盖及箱盖等组成,在上下顶盖布置位移测量装置,然后沿垂直方向加载,即可同时测得桩端阻力和桩侧摩阻力以及上下顶盖的位移值,从而得到试验结果数据与曲线。该方法有以下特点: i. 试验装置简单; ii. 可直接测得端阻和侧阻; iii. 经过处理后,试桩仍可用做工程桩;3、桩基静载试验测试仪器的发展随着电子技术的发展,桩基静载测试技术也向着自动化测试方向不断发展。在早期阶段,还只是使用“点动”装置,实现了加压的电动泵控制。到了80年代,天津建筑科学研究院率先研制出了具有当时较高水平的“自动化”静载测试仪,可惜的是并没有形成商品化,只是在内部使用;随后,江苏省徐州建筑科学研究所研制成功并商品化了在当
16、时技术含量较高的自动化静载测试仪,虽然还存在许多不尽人意的地方,但这毕竟代表着在桩基静载荷测试仪的研发方面走在了世界前面。进入90年代以后,又有许多单位从事此项仪器的开发工作,1996年,武汉岩海公司研制成功了具有当时较高水平的自动化静载测试仪,进入21世纪以后,在自动化静载测试仪的研制开发方面,武汉建科科技有限公司异军突起,将先进的虚拟仪器技术和无线数据传输技术应用到了自动化静载测试仪的研制开发上面,先后推出了ST1000型静载测试仪和ST2000型静载测试仪,实现了在一种型号仪器内多种测试方法并存的无线数据采集系统,解决了现有的测试仪器只能做单一的桩基检测的弊端,可以提供给用户多种测试模式
17、,涉及到了桩基、地基、基岩、锚杆等需要同时采集位移和压力的测试场合,并且利用武汉建科科技有限公司提供的透明数据接口,具有科研实力的研究机构也可以自己编写符合本单位实际需要的数据采集分析软件,真正实现了人性化设计、理性化产品。目前,武汉建科科技有限公司仍然根据用户的需求和现场测试的要求不断改进现有产品,现在可以说武汉建科科技有限公司的ST2000型静载测试仪已走在了全国同类产品的前列。三、 我国静载试验现存的问题1、 检测人员素质参差不齐,有些单位的检测人员是刚进城的民工,从而造成对标准规范执行的偏差,记录不符合要求,现场操作马虎,有些检测单位甚至是三无单位:无检测资质、无检测人员、无检测设备;
18、2、 现场准备工作不认真,测试仪表不符合要求,特别是现场基准梁的架设以及锚桩、基准桩、试桩间的布置间距不符合规范的规定,在加载设备方面,受现有设备的限制,采用大千斤顶量测小吨位桩,这就如同大称称轻物,其精度不可能满足测试要求;3、 不认真执行规范制定的试验步骤,提前加压或记录,卸载时不进行回弹观测;4、 检测报告不规范,内容过于简单,无工程概况及土层分布情况。5、 桩基静载试验中的任何试验数据都必须从经过定期计量标定的测量器具上获得,这样的数据才能是真实的数据,但在我国有一定数量的桩基检测单位,其所使用的千斤顶、油压表、百分表、自动化测试仪有的几年不标一次,有的甚至没有计量器具许可证。四、 我
19、国静载试验的展望传统的桩基静载试验的慢速维持荷载法费时、费力,已远不能适应当前桩基检测工作的发展,在快速荷载试验法的技术上,我们有许多试验单位都作了大量的现场试验对比工作。从国外的发展情况来看,快速荷载试验法将是一个试验手段的发展方向。在这方面,有些地方规范已明确规定了快速荷载试验法的试验步骤,在国家规范方面,建筑工程基桩检测技术规范(征求意见稿2001)中已明确提出了试验方法步骤。桩承载力自平衡试验方法是大承载力桩基静载试验的一种发展方向,但这种技术方法还刚刚兴起,其理论研究还在进行当中,该试验所得到的各种图表数据与传统的试验结果图表还有许多需要对比研究的地方。在现场设备安装时,荷载箱的放置
20、位置会影响到桩侧阻力和桩端阻力的发挥,国外荷载箱一般放在桩端,这是因为国外试桩桩端一般都位于坚硬的持力层中,而我国各地的情况就有所不同,所以在设备安装前要事先进行计算,将荷载箱安装在合适的部位。该方法测出的上段桩的摩阻力方向是向下的,与常规方法测出的摩阻力方向相反,这方面还需要做进一步的理论研究与现场对比试验。作为桩基工程的使用量和检测量的大国,相信随着测试理论和技术的不断完善、国际交流的不断广泛开展,我国的桩基静载试验将越来越走向成熟并形成自己的特色。参考文献1、 段尔焕、刘道方,桩基试验检测技术的发展及应用综述,云南大学学报,2000增刊892、 建筑地基基础设计规范(GBJ789),北京
21、:中国建筑工业出版社,19893、 建筑桩基技术规范(JGJ9494),北京:中国建筑工业出版社,19954、 陈宗岳,最小曲率半径法确定单桩极限荷载和摩阻力,水运工程,1988,85、 牛冬生、沈保汉,确定桩屈曲荷载的P(KP2)法,第五界土力学会论文,北京市建筑工程研究院,1987,116、 赵明华,桥梁桩基计算和检测,北京:人民交通出版社,20007、 祝龙根、刘利民、耿乃兴,地基基础测试新技术,北京:机械工业出版社,19998、 龚维明、蒋永生、翟晋,桩承载力自平衡测试法,岩土工程学报,2000,22(5),5325369、 季宜海、邓壮志,桩基静载荷检测中存在的问题,工程质量,200
22、1,210、宋义仲,桩基检测技术在山东地区的历史、现状及发展趋势,见:建筑工程检测技术论文集,北京:冶金工业出版社,1999建筑桩基检测技术规范JGJ106-2003建筑基桩检测技术规范 资料编号:JGJ106-2003 中华人民共和国行业标准 Technical code for testing of building foundation piles JGJ 106 2003 J 256 2003 中华人民共和国行业标准 Technical code for testing of building foundation piles JGJ 106 2003 批准部门:中华人民共和国建设部
23、实施日期:2003 年7 月1 日 中华人民共和国建设部 公告 第133 号 建筑基桩检测技术规范的公告: 现批准建筑基桩检测技术规范为行业标准,编号为JGJ106 2003,自2003 年7月1 日起实施。其中,第3.1.1 、4.3.5 、4.4.4 、6.4.6 、8.4.7 、9.2.3 、9.2.4,9.4.2 、9.4.5 、9.4.15 条为强制性条文,必须严格执行。原行业标准基桩高应变动力检测规程JGJ1O6 97 同时废止。本规程由建设部标准定额研究所组织中国建筑工业出版社出版发行。 中华人民共和国建设部 2003 年3 月21 日 前 言 根据建设部建标2000 284 号
24、文的要求,规范编制组经过广泛调查研究,认真总结国内外桩基工程基桩检测的实践经验和科研成果,并在广泛征求意见的基础上,制定了本规范。本规范的主要技术内容是:总则、术语和符号、基本规定、单桩竖向抗压静载试验、单桩竖向抗拔静载试验、单桩水平静载试验、钻芯法、低应变法、高应变法、声波透射法等。本规范由建设部负责管理和对强制性条文的解释,由主编单位负责具体技术内容的解释。本规范主编单位:中国建筑科学研究院(地址:北京市北三环东路30 号;邮编:100013) 本规范参加编写单位:广东省建筑科学研究院 上海港湾工程设计研究院 冶金工业工程质量监督总站检测中心 中国科学院武汉岩土力学研究所 深圳市勘察研究院
25、 辽宁省建设科学研究院 河南省建筑工程质量检验测试中心站 福建省建筑科学研究院 上海市建筑科学研究院 本规范主要起草人:陈 凡 徐天平 朱光裕 钟冬波 刘明贵 刘金砺 叶万灵 滕延京 李大展 刘艳玲 关立军 李荣强 王敏权 陈久照 赵海生 柳 春 季沧江 目 录 1 总 则.8 2 术语、符号.9 2.1 术语 .9 2.2 符 号.10 3 基本规定.13 3.1 检测方法和内容.13 3.2 检测工作程序.14 3.3 检测数量.15 3.4 验证与扩大检测.17 3.5 检测结果评价和检测报告.18 3.6 检测机构和检测人员.19 4 单桩竖向抗压静载试验.20 4.1 适用范围.20
26、 4.2 设备仪器及其安装.20 4.3 现场检测.21 4.4 检测数据的分析与判定.23 5 单桩竖向抗拔静载试验.25 5.1 适用范围.25 5.2 设备仪器及其安装.25 5.3 现场检测.25 5.4 检测数据的分析与判定.26 6 单桩水平静载试验.28 6.1 适用范围.28 6.2 设备仪器及其安装.28 6.3 现场检测.29 6.4 检测数据的分析与判定.29 7 钻芯法.32 7.1 适用范围.32 7.2 设 备.32 7.3 现场操作.32 7.4 芯样试件截取与加工.33 7.5 芯样试件抗压强度试验.34 7.6 检测数据的分析与判定.34 8 低应变法.37
27、8.1 适用范围.37 8.2 仪器设备.37 8.3 现场检测.37 8.4 检测数据的分析与判定.38 9 高应变法.41 9.1 适用范围.41 9.2 仪器设备.41 9.3 现场检测.41 9.4 检测数据的分析与判定.43 10 声波透射法.48 10.1 适用范围.48 10.2 仪器设备.48 10.3 现场检测.48 10.4 检测数据的分析与判定.49 附录A 桩身内力测试.54 附录B 混凝土桩桩头处理.59 附录C 静载试验记录表.60 附录D 钻芯法检测记录表.61 附录E 芯样试件加工和测量.63 附录F 高应变法传感器安装.64 附录G 试打桩与打桩监控.66 G
28、.1 试打桩.66 G.2 桩身锤击应力监测.66 G.3 锤击能量监测.67 附录H 声测管埋设要点.68 本规范用词说明.69 1 总 则 1.0.1 为了确保基桩检测工作质量,统一基桩检测方法,为设计和施工验收提供可靠依据,使基桩质量检测工作符合安全适用、技术先进、数据准确、正确评价的要求,制定本规范。 1.0.2 本规范适用于建筑工程基桩的承载力和桩身完整性的检测与评价。 1.0.3 基桩检测方法应根据各种检测方法的特点和适用范围,考虑地质条件、桩型及施工质量可靠性、使用要求等因素进行合理选择搭配。基桩检测结果应结合上述因素进行分析判定。 1.0.4 建筑工程基桩的质量检测除应执行本规
29、范外,尚应符合国家现行有关强制性标准的规定。 2 术语、符号 2.1 术 语 2.1.1 基桩 foundation pile 桩基础中的单桩。 2.1.2 桩身完整性 pi1e integrity 反映桩身截面尺寸相对变化、桩身材料密实性和连续性的综合定性指标。 2.1.3 桩身缺陷 pile defects 使桩身完整性恶化,在一定程度上引起桩身结构强度和耐久性降低的桩身断裂、裂缝、缩颈、夹泥(杂物)、空洞、蜂窝、松散等现象的统称。 2.1.4 静载试验static loading test 在桩顶部逐级施加竖向压力、竖向上拔力或水平推力,观测桩顶部随时间产生的沉降、上拔位移或水平位移,以
30、确定相应的单桩竖向抗压承载力、单桩竖向抗拔承载力或单桩水平承载力的试验方法。 2.1.5 钻芯法 core drilling method 用钻机钻取芯样以检测桩长、桩身缺陷、桩底沉渣厚度以及桩身混凝土的强度、密实性和连续性,判定桩端岩土性状的方法。 2.1.6 低 应变法 low strain integriiy testing 采用低能量瞬态或稳态激振方式在桩顶激振,实测桩顶部的速度时程曲线或速度导纳曲线,通过波动理论分析或频域分析,对桩身完整性进行判定的检测方法。 2.1.7 高应变法high strain dynamic testing 用重锤冲击桩顶,实测桩顶部的速度和力时程曲线,通
31、过波动理论分析,对单桩竖向抗压承载力和桩身完整性进行判定的检测方法。 2.1.8 声波透射法 crosshole sonic logging 在预埋声测管之间发射并接收声波,通过实测声波在混凝土介质中传播的声时、频率和波幅衰减等声学参数的相对变化,对桩身完整性进行检测的方法。 2.2 符 号 2.2.1 抗力和材料性能 c 桩身一维纵向应力波传播速度(简称桩身波速); E 桩身材料弹性模量; cu f 混凝土芯样试件抗压强度; m 地基土水平抗力系数的比例系数; u Q 单桩竖向抗压极限承载力; a R 单桩竖向抗压承载力特征值; c R 由凯司法判定的单桩竖向抗压承载力; x R 缺陷以上部
32、位土阻力的估计值; |? 桩身混凝土声速; Z 桩身截面力学阻抗; |? 桩身材料质量密度。 2.2.2 作 用与作用效应 F 锤击力; H 单桩水平静载试验中作用于地面的水平力; P 芯样抗压试验测得的破坏荷载; Q 单桩竖向抗压静载试验中施加的竖向荷载、桩身轴力; s 桩顶竖向沉降、桩身竖向位移; U 单桩竖向抗拔静载试验中施加的上拔荷载; V 质点运动速度; 0 Y 水平力作用点的水平位移; |? 桩顶上拔量; S | 钢筋应力。 2.2.3 几何参数 A 桩身截面面积; B 矩形桩的边宽; 0 b 桩身计算宽度; D 桩身直径(外径); d 芯样试件的平均直径; I 桩身换算截面惯性矩
33、; l ?每检测剖面相应两声测管的外壁间净距离; L 测点下桩长; x 传感器安装点至桩身缺陷的距离; z 测点深度。 2.2.4 计算系数 c J 凯司法阻尼系数; | 桩的水平变形系数; |? 高应变法桩身完整性系数; |? 样本中不同统计个数对应的系数; y | 桩顶水平位移系数; |? 混凝土芯样试件抗压强度折算系数。 2.2.5 其他 m A 声波波幅平均值; p A 声波波幅值; a 信号首波峰值电压; 0 a 零分贝信号峰值电压; m c 桩身波速的平均值; f 频率、声波信号主频; n 数目、样本数量; x s 标准差; T 信号周期; t ?声测管及耦合水层声时修正值; 0
34、t 仪器系统延迟时间; 1 t 速度第一峰对应的时刻; c t 声时; i t 时间、声时测量值; r t 锤击力上升时间; x t 缺陷反射峰对应的时刻; 0 |? 声速的异常判断值; c |? 声速的异常判断临界值; L |? 声速低限值; m |? 声速平均值; f .幅频曲线上桩底相邻谐振峰间的频差; f ?.幅频曲线上缺陷相邻谐振峰间的频差; T .速度波第一峰与桩底反射波峰间的时间差; x t .速度波第一峰与缺陷反射波峰间的时间差。 3 基本规定 3.1 检测方法和内容 3.1.1 工程桩应进行单桩承载力和桩身完整性抽样检测。 3.1.2 基 桩检测方法应根据检测目的按表3.1.
35、2 选择。 表3.1.2 检测方法及检测目的 检测方法检测目的: 单桩竖向抗压静载试验,确定单桩竖向抗压极限承载力,判定竖向抗压承载力是否满足设计要求,通过桩身内力及变形测试、测定桩侧、桩端阻力;验证高应变法的单桩竖向抗压承载力检测结果。 单桩竖向抗拔静载试验,确定单桩竖向抗把极限承载力,判定竖向抗拔承载力是否满足设计要求。 通过桩身内力及变形测试,测定桩的抗拔摩阻力。 单桩水平静载试验确定单桩水平临界和极限承载力,推定土抗力参数判定水平承载力是否满足设计要求。 通过桩身内力及变形测试,测定桩身弯矩。 钻芯法: 检测灌注桩桩长、桩身混凝土强度、桩底沉渣厚度,判断或鉴别桩端岩土性状,判定桩身完整性类别。 低应变法检测桩身缺陷及其位置,判定桩身完整性类别。 高应变法: 判定单桩竖向抗压承载力是否满足设计要求; 检测桩身缺陷及其位置,判定桩身完整性类别,分析桩侧和桩端土阻力。 声波透射法检测灌注桩桩身缺陷及其位置,判定桩身完整性类别。 3.1.3 桩身完整性检测宜采用
限制150内