汽车安全气囊碰撞有限元分析外文翻译.doc





《汽车安全气囊碰撞有限元分析外文翻译.doc》由会员分享,可在线阅读,更多相关《汽车安全气囊碰撞有限元分析外文翻译.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流汽车安全气囊碰撞有限元分析外文翻译.精品文档.FINITE ELEMENT ANALYSIS OF AUTOMOBILECRASH SENSORS FOR AIRBAG SYSTEMSABSTRACTAutomobile spring bias crash sensor design time can be significantly reduced by using finite element analysis as a predictive engineering tool.The sensors consist of a ball a
2、nd springs cased in a plastic housing.Two important factors in the design of crash sensors are the force-displacement response of the sensor and stresses in the sensor springs. In the past,sensors were designed by building and testing prototype hardware until the force-displacement requirements were
3、 met. Prototype springs need to be designed well below the elastic limit of the material.Using finite element analysis, sensors can be designed to meet forcedisplacement requirements with acceptable stress levels. The analysis procedure discussed in this paper has demonstrated the ability to elimina
4、te months of prototyping effort.MSC/ABAQUS has been used to analyze and design airbag crash sensors.The analysis was geometrically nonlinear due to the large deflections of the springs and the contact between the ball and springs. Bezier 3-D rigid surface elements along with rigid surface interface
5、(IRS) elements were used to model ball-to-spring contact.Slideline elements were used with parallel slideline interface (ISL) elements for spring-to-spring contact.Finite element analysis results for the force-displacement response of the sensor were in excellent agreement with experimental results.
6、INTRODUCTIONAn important component of an automotive airbag system is the crash sensor. Various types of crash sensors are used in airbag systems including mechanical, electro-mechanical, and electronic sensors. An electro-mechanical sensor (see Figure 1) consisting of a ball and two springs cased in
7、 a plastic housing is discussed in this paper. When the sensor experiences a severe crash pulse, the ball pushes two springs into contact completing the electric circuit allowing the airbag to fire. The force-displacement response of the two springs is critical in designing the sensor to meet variou
8、s acceleration input requirements. Stresses in the sensor springs must be kept below the yield strength of the spring material to prevent plastic deformation in the springs. Finite element analysis can be used as a predictive engineering tool to optimize the springs for the desired force-displacemen
9、t response while keeping stresses in the springs at acceptable levels.In the past, sensors were designed by building and testing prototype hardware until the forcedisplacement requirements were met. Using finite element analysis, the number of prototypes built and tested can be significantly reduced
10、, ideally to one, which substantially reduces the time required to design a sensor. The analysis procedure discussed in this paper has demonstrated the ability to eliminate months of prototyping effort. MSC/ABAQUS 1 has been used to analyze and design airbag crash sensors. The analysis was geometric
11、ally nonlinear due to the large deflections of the springs and the contact between the ball and springs. Various contact elements were used in this analysis including rigid surface interface (IRS) elements, Bezier 3-D rigid surface elements, parallel slide line interface (ISL) elements, and slide li
12、ne elements. The finite element analysis results were in excellent agreement with experimental results for various electro-mechanical sensors studied in this paper.PROBLEM DEFINITIONThe key components of the electro-mechanical sensor analyzed are two thin metallic springs (referred to as spring1 and
13、 spring2) which are cantilevered from a rigid plastic housing and a solid metallic ball as shown in Figure 1. The plastic housing contains a hollow tube closed at one end which guides the ball in the desired direction. The ball is held in place by spring1 at the open end of the tube. When the sensor
14、 is assembled, spring1 is initially displaced by the ball which creates a preload on spring1. The ball is able to travel in one direction only in this sensor and this direction will be referred to as the x-direction (see the global coordinate system shown in Figure 2) in this paper. Once enough acce
15、leration in the x-direction is applied to overcome the preload on spring1, the ball displaces the spring. As the acceleration applied continues to increase, spring1 is displaced until it is in contact with spring2. OnceFigure 1. Electro-mechanical automobile crash sensor.contact is made between spri
16、ng1 and spring2, an electric circuit is completed allowing the sensor to perform its function within the airbag system.FINITE ELEMENT ANALYSIS METHODOLOGYWhen creating a finite element representation of the sensor, the following simplifications can be made. The two springs can be fully restrained at
17、 their bases implying a perfectly rigid plastic housing. This is a good assumption when comparing the flexibility of the thin springs to the stiff plastic housing. The ball can be represented by a rigid surface since it too is very stiff as compared to the springs. Rather than modeling the contact b
18、etween the plastic housing and the ball, all rotations and translations are fully restrained except for the xdirection on the rigid surface representing the ball. These restraints imply that the housingFigure 2. Electro-mechanical sensor finite element mesh.will have no significant deformation due t
19、o contact with the ball. These restraints also ignore any gaps due to tolerances between the ball and the housing. The effect of friction between the ball and plastic is negligible in this analysis.The sensor can be analyzed by applying an enforced displacement in the x-direction to the rigid surfac
20、e representing the ball to simulate the full displacement of the ball. Contact between the ball and springs is modeled with various contact elements as discussed in the following section. A nonlinear static analysis is sufficient to capture the force-displacement response of the sensor versus using
21、a more expensive and time consuming nonlinear transient analysis. Although the sensor is designed with a ball mass and spring stiffness that gives the desired response to a given acceleration, there is no mass associated with the ball in this static analysis. The mass of the ball can be determined b
22、y dividing the force required to deflect the springs by the acceleration input into the sensor.MeshThe finite element mesh for the sensor was constructed using MSC/PATRAN 2. The solver used to analyze the sensor was MSC/ABAQUS. The finite element mesh including the contact elements is shown in Figur
23、e 2. The plastic housing was assumed to be rigid in this analysis and was not modeled. Both springs were modeled with linear quadrilateral shell elements with thin shell physical properties. The ball was assumed to be rigid and was modeled with linear triangular shell elements with Bezier 3-D rigid
24、surface properties.To model contact between the ball and spring1, rigid surface interface (IRS) elements were used in conjunction with the Bezier 3-D rigid surface elements making up the ball. Linear quadrilateral shell elements with IRS physical properties were placed on spring1 and had coincident
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 汽车 安全气囊 碰撞 有限元分析 外文 翻译

限制150内