模糊聚类分析的理论.doc
《模糊聚类分析的理论.doc》由会员分享,可在线阅读,更多相关《模糊聚类分析的理论.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流模糊聚类分析的理论.精品文档.模糊分析的理论、方法与应用研究摘要:二十世纪六十年代,产生了模糊数学这门新兴学科。模糊数学作为一个新兴的数学分支,使过去那些与数学毫不相关或关系不大的学科(如生物学、心理学、语言学、社会科学等)都有可能用定量化和数学化加以描述和处理,从而显示了强大的生命力和渗透力,使数学的应用范围大大扩展。模糊数学自身的理论研究进展迅速;模糊数学目前在自动控制技术领域仍然得到最广泛的应用,并在计算机仿真技术、多媒体辨识等领域的应用取得突破性进展;模糊聚类分析理论和模糊综合评判原理等更多地被应用于经济管理、环境科学以及医药、生物、
2、农业、文体等领域,并取得很好效果。关键词:模糊数学;应用;模糊评判;模糊聚类。前言:聚类就是把具有相似性质的事物区分开加以分类。聚类分析就是用数学方法研究和处理给定对象的分类,“人以群分,物以类聚”,聚类问题是一个古老的问题,是伴随着人类产生和发展不断深化的一个问题。人类要认识世界就必须要区分不同的事物并认识事物间的,聚类就是把具有相似性质的事物区分开加以分类。经典分类学往往是从单因素或有限的几个因素出发,凭经验和专业对事物分类。这种分类具有非此即彼的特性,同一事物归属且仅归属所划定类别中的一类,这种分类的类别界限是清晰的。随着着人们认识的深入,发现这种分类越来越不适用于具有模糊性的分类间题,
3、如把人按身高分为“高个子的人,“矮个子的人”,“不高不矮的人”。如何判别特定的一个人的类别便产生了经典分类学解决不了的困难。模糊数学的产生为上述软分类提供了数学基础,由此产生了模糊聚类分析。我们把应用普通数学方法进行分类的聚类方法称为普通聚类分析,而把应用模糊数学方法进行分析的聚类分析称为模糊聚类分析。1965年L. A. Zadeh创立了模糊集合论不久,E. H. Ruspinid于1969年引人了模糊划分的概念进行模糊聚类分析。I. Gitman和M. D. Levine提出了单峰模糊集方法用于处理大数据集和复杂分布的聚类。1974年J. C. Bezdek和J. C. Dunn提出了模糊
4、ISODATA聚类方法。随着模糊数学传人我国,模糊聚类分析也传人了我国。其应用领域已包括了天气预报、气象分析、模式识别、生物、医学、化学等诸多领域。1.模糊理论的产生1.1模糊数学 1.1.1模糊数学的背景精确数学是建立在经典集合论的基础之上,一个研究的对象对于某个给定的经典集合的关系要么是属于(记为“”),要么是不属于(记为“”),二者必居其一。19世纪,由于英国数学家布尔(Bool)等人的研究,这种基于二值逻辑的绝对思维方法抽象后成为布尔代数,它的出现促使数理逻辑成为一门很有适用价值的学科,同时也成为计算机科学的基础。但是,二值逻辑无法解决一些逻辑悖论,如著名的罗素(Russell)“理发
5、师悖论”、“秃头悖论”、“克利特岛人说谎悖论”等等悖论问题。传统数学所赖以存在的基石是普通集合论,是二值逻辑,而它是抛弃了事物的模糊性而抽象出来的,将人脑思维过程绝对化了,数学中普通集合描述的是“非此即彼”的清晰对象,而人脑还要识别那些“亦此亦彼”的模糊现象。日常生活中各种“模糊性”现象比比皆是,逻辑悖论的发现以及海森堡(Heisenberg)测不准原理的提出导致了多值逻辑在20世纪二三十年代的诞生。罗素在说到“所有的二值都习惯上假定使用精确符号,因此它仅适用于虚幻的存在,而不适用于现实生活,逻辑比其他学科使我们更接近于天堂”时就认识到了二值逻辑的不足。波兰逻辑学家卢卡塞维克兹(Lukasie
6、wicz)首次正式提出了三值逻辑体系,把逻辑真值的值域由0,1二值扩展到0,1/2,1三值,其中1/2表示不确定,后来他又把真值范围从0,1/2,1进一步扩展到0,1之间的有理数,并最终扩展为0,1区间。1.1.2模糊数学的发展1965年,美国控制论专家、数学家查德发表了论文模糊集合,标志着模糊数学这门学科的诞生。 模糊数学的研究内容主要有以下三个方面: 第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。察德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有
7、可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。 在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为0.5,即“半老”,60岁属于“老”的程度0.8。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。 第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊
8、性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。 为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立和是的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。 如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他文法稍有错误,但尚能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。目前,模糊语言还很不成熟,语言学家正在深入研究。 人们的思维活动常常要求概念的确定性
9、和精确性,采用形式逻辑的排中律,既非真既假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。 为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑基础上,研究模糊逻辑。目前,模糊罗基还很不成熟,尚需继续研究。 第三,研究模糊数学的应用。模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述
10、感到不足之处,就能得到弥补。在模糊数学中,目前已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。1.1.3模糊数学的应用模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。 目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机,1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。1988年,我国汪培庄教授指导的
11、几位博士也研制成功一台模糊推理机分立元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关方面迈出了重要的一步。 2.模糊理论的基本概念2.1模糊数学以数学手段分析与处理模糊性事物的学科。模糊数学是研究和处理模糊性现象的数额学。所谓模糊性,意指客观事物的差异在中介过度时所呈现的“亦此亦彼”的特性。模糊数学中,归属度是建立模糊集合的基础,归属函数是描述模糊性的关键。2.2模糊集合(Fuzzy Set)表示界限或边界不明确的特定集合,以特征函数来表示元素与集合间之归属程度,一般特征函数又称为归属函数(membershipfunction),其值界于0,1区间。在自然和社会现象中
12、,绝对性、两极化的突变是不存在的,两极化间的差异往往要经由一个“中介过度形式”來表征,即具“亦此亦彼”性。需要定义集合与集合之间的基本运算和关系,以便日后将模糊集合应用于各种领域之中,所不同的只是因為,绝大多数的事物是无法以明确的二分逻辑法加以切割的。2.3模糊关系在人们的实际生活与工作中,模糊性是无法避免的,现实世界存在元素间的关系,并非是简单的“是与否”或“有与无”的关系,而是有着不同程度的关系存在。例如某家庭子女与父母外貌得相似关系,就很难以绝对地“像”与“不像”来表明或定义,只能评论他们“相像”的程度。3.模糊理论的应用模糊理论一产生就在数学领域本身及其他领域得到了广泛的应用到世纪年代
13、,已经形成了具有完整体系和鲜明特点的“模糊拓扑学”,框架日趋成熟的“模糊随机数学”,“模糊分析学”,“模糊逻辑理论”以及专著虽少但相关论文却非常丰富的“ 模糊代数理论”等。这些理论的形成与发展极大地丰富和完善了模糊数学的内容。模糊逻辑是模糊理论中的重要研究方向,它的最大成功是其在控制论中的应用。但是,模糊逻辑在理论上的研究还远远不够深人,也没有形成自身独有的理论体系,其研究的思路基本上还是沿着二值逻辑的体系来展开的,所以难免要受到一些学者的怀疑或疑惑。展开这类讨论无论是对模糊逻辑还是对模糊数学本身的发展都是非常有益的,这是模糊逻辑强大生命力的表现,同时也进一步促进这一领域学者从理论上更深人系统
14、地研究相关的论题。模糊技术已渗透到自然科学、社会科学及工程技术的几乎全部领域,像电力、电子、核物理、石油、化工、机械、冶金、能源、材料、交通、医疗、卫生、林业、农业、地质、地理、地震、建筑、水文、气象、环保、管理、法律、教育、心理、体育、军事和历史等领域,都有其成功应用的范例。模糊技术将成为21世纪的核心技术。4.模糊聚类分析在科学技术、经济管理中常常要按一定的标准(相似程度或亲疏关系)进行分类。例如,根据生物的某些性状可对生物分类,根据土壤的性质可对土壤分类等。对所研究的事物按一定标准进行分类的数学方法称为聚类分析,它是多元统计“物以类聚”的一种分类方法。由于科学技术、经济管理中的分类界限往
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 模糊 聚类分析 理论
限制150内