《浅谈扬声器设计.doc》由会员分享,可在线阅读,更多相关《浅谈扬声器设计.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流浅谈扬声器设计.精品文档.浅谈扬声器设计发布:2009-1-05 09:27 | 作者:廖喇叭 | 来源:本站 | 查看:98次 | 字号: 小 中 大浅谈扬声器设计本人从事扬声器及其系统开发已经15年,一个偶然的机会与声学楼结下一段缘分,于是我驻足良久,想籍此结交一些扬声器个中高手以做切磋,甚而我有更远大之理想:为提高整个中国之扬声器制造业水平而略尽绵力!我国是世界公认的电声器件第一生产大国和出口大国,但却不是强国,总体上处于OEM的阶段,只有少数企业进入ODM阶段这也是长期努力的结果!究竟是什么原因导致我泱泱大国的扬声器“大”而不“强”呢
2、?我时常苦思这个问题:论市场我们有;论技术我们有;论廉价劳动力我们也有!可我们的产品却总比不过人家!我们对自身的素质要求太低啦;我们的技术交流太少啦;我们都太保守啦!集多年的研发经验,现将一些心得与诸君分享,以期拋砖引玉:1音圈的感抗:音圈的感抗是由于音圈在磁场中上下运动切割磁力线产生感应电动势,这个感应电动势中的感应电流对音圈的电流产生反作用,从而产生音圈的感抗。对于一个扬声器来说:感抗弊大于利,固我们在扬声器的开发中都尽量避免音圈感抗的产生。要消除音圈的感抗最常用的方法有两种:11在T铁的顶部加一个铜套;12在T铁的底部加一个铜环;2力撑系统的顺性在阻抗曲线上的表现(列图): 经验值(相对
3、):A属于高顺性扬声器 B属于低顺性扬声器3产生如下曲线的原因及改进之方案: 经验值:此应为力撑系统的粘接不良产生共振从而产生曲线上的峰谷,改进之方案应该从制造的工艺上去想办法。1 目的:BmHm達到最大值2 方案:21 氣隙磁場無漏磁Bg Ag = Bm AmHg Lg = Hm Lm Bm/Hm =Lm/Am Ag/Lg = tg Vm = Am Lm = BgAg/Bm HgLg/Hm = Bg2Vg/BmHmLd = BgLgBr/HcBdHdAd = BgAgHc/Br BdHd 22 氣隙磁場有漏磁FbgAg = BmAmFHgLg = HmLm3 目前我公司採用2.1設計方案。1
4、 目的:使震動系統産生極小的橫震動與極大的縱震動。2 原理:F = Bli e = BLv F = i e = v3 方案:31 材料的密度要小32 材料楊氏模量E要大 33 具有適當的內阻尼34 採用複合泡沫邊紙盆35 採用耐高溫音圈系統36 採用絹布彈波系統2.10电动式扬声器 介绍电动式扬声器工作原理、应用、测量,音箱设计和分频器设计。电动式扬声器是目前主要的扬声器类型,包括低音,中音和高音,基本工作原理如下: 电流通过音圈产生电磁场和磁隙中永久磁场相互作用使音圈受到力的作用,使与之相连的振动板产生机 械振动,正如JBLMarkGrander指出,要想产生声音,必须移动空气。 其机械构造
5、与电动机相似,只不过电动机的转子被扬声器的音圈振动系统所代替。图2.1是典型的动圈式 扬声器的剖示图。当永久磁场中的音圈通有电流时,根据右手定则在磁隙永久磁场内部会产生一个电磁 场,磁场相互作用,由此所产生的机械力使得锥体式振膜或球顶式振膜沿着垂直于磁缝的方向运动。并带动了振膜两旁的空气运动。电动式扬声器由三个独立但又组装在一起协调工作的系统组成: 1.驱动系统:由磁体,中心导磁柱,上导磁板和音圈组成。 2.振动系统:由振动板,防尘罩或者球顶振膜组成。 3.支撑系统:由定心支片和折环组成。 2.20驱动系统:驱动系统由五个基本部件组成,包括组成磁隙的上导磁板和导磁柱,磁体,音圈和后导磁板。上下
6、导磁 板和导磁柱由高导磁材料如纯铁制作,它们为磁场提供一条路径。磁体通常由钡铁氧体材料类制作,并且形状一般为圆环形状。磁路通过磁隙构成回路。在磁隙空气中产生非常高的磁场强度。如果交流电流 通过音圈,例如60Hz正弦波,当在正半周时,通过音圈电流将会使音圈朝一个方向运动,当在负半周时,电流反向,产生电磁场反向,音圈改变运动方向,这就是两个磁场作用产生推拉的结果。为了准确重放 由正弦波输入产生的运动,音圈在磁隙两个方向移动应相等。为了保证这点,磁隙磁场的对称性非常重要,这样在两个不同方向上才能获得相同的驱动力。如果不这样,就会产生信号失真。 如果磁场磁力线被限制在非常窄的磁隙中,可以认为磁场是对称
7、的,不需要考虑它的影响。但是,磁力线会跑出磁隙空间范围,在磁隙两边产生漏磁场,通常有很多方法可以保证漏磁场对称,见图2.2。图2.2 中A为普通圆柱型导磁柱,由于结构不对称,所以产生不对称的漏磁场,虽然应用广泛,但是这种结构最差。图2.2中B为将导磁柱加工成工字形,所以产生对称的磁场。惠威现在D系列,早期S系列均采用上述磁路结构。图2.2中C为导磁柱加工成一个角度,同2.2中A相近,但漏磁场对称性要好一些。惠威现在PLUS系 列采用这个磁路结构。 电流通过音圈产生机械力,用BL值表示。BL为一定圈数的导线长度L乘以单位面积磁通密度B。BL是衡量 驱动系统强度一个参数,单位用TM/N。怎样测量B
8、L数值可以参看扬声器测量部份。 2.21磁隙几何形状和BL值:在扬声器中,通常用两种基本的磁隙/音圈几何组合,短音圈方式和长音圈方式。图2.3的两种方式中,长音圈方式应用要普遍得多。图中Xmax表示的距离代表音圈朝一个方向可以运行的距离,在这个移动范围内,音圈在磁隙中切割磁场的音圈匝数没有变化。Xmax等于音圈卷宽减去磁隙高度 再除以2。图2.4显示了两种不同方式BL值随着音圈位移增加(单向)变化结果。当输入扬声器电压增加时,音圈位移越来越偏离磁隙,直到超过Xmax。此时,音圈在磁隙中匝数减少,总的BL值减少。一个扬声器当它的音圈匝数在磁隙中恒定时,称为工作在线性范围内,如果当它的音圈匝数在磁
9、隙中减少或变化时, 称为工作在非线性范围内。短音圈方式在一个短的距离内,得到相当线性的驱动力,但是通常同长音圈方式相比,具有比较低的BL值,(因为增加了磁隙高度所以要求比较强的磁场,短的音圈则意味着轻的音圈 质量)。长音圈方式优点在于合理的线性范围以及更高的效率(虽然音圈重量增加),所以这种方式受到制造商普遍采用。不同的音圈卷宽配合不同的磁隙高度,可以获得相同的Xmax。但是当位移超过Xmax时,非线性表现却不一 样。例如:一个12mm卷宽音圈配合8mm磁隙同一个8mm卷宽音圈配合4mm磁隙,他们具有相同Xmax=2mm。虽然 他们Xmax一样,但是磁隙高度同Xmax之比例却大不一样。12mm
10、为4:1。但8mm卷宽音圈只有2:1。音圈位移 超过Xmax时,这个比值同BL值减少有一定关系。图2.5给出了具有相同Xmax值,但是不同磁隙高度/Xmax 比例情况下,上述例子BL非线性特性曲线。请看图,BL在超过最大线性位移Xmax之后,开始逐步下降, 到了大约两倍Xmax时开始急剧下降,当磁隙高度/Xmax比值大时,同磁隙高度/Xmax比值小的相比,BL值 下降要慢一些。在位移极限位置附近,也就是当音圈离开磁隙一个很大距离时,当位移变化时,BL值本 身变化不大,曲线变得很低,并且BL值趋近0。虽然BL值在两倍Xmax之内下降缓慢,但是失真却首先反映出来,在满足失真要求下,音圈最大位移通常
11、在Xmax基础之上再加15%。在增加音圈电压时,通过测量三次谐波失真可以决定最大线性位移。此时,由于位移增加,并且超过Xmax,三次谐波失真开始增加。当三 次谐波失真达到大约3%时,位移量大约在Xmax+15%点上。 2.22短路环和法拉利回路:电流通过音圈同样产生一个附加电流,同扬声器音圈电流相反,也就是大家熟悉的反电动势效应,这个反 电动势在音圈中产生的电流作用就像发电机转子,这个效应产生的电磁场,同扬声器音圈中信号电流产生交 流磁场一起,在磁隙磁场之中产生磁场调制作用。这个现象在1949年由W.J.Cunningham发现,会产生严重 的二次谐波失真。进一步研究表明,这个对磁场调制现象,
12、当音圈向不同的方向运动时,效果是不同的,换句话说,它是一个不对称的磁场调制效应。 产生这个不对称磁场调制效应部份原因就是导磁柱,作用好像变压器铁芯。当音圈变换运动方向时,就会 同步发生磁场调制。并且在音圈单向运动超过Xmax时,部份同步的产生磁场调制。另外发现,音圈磁场同 漏磁场相互作用改变漏磁场形状,这个结论,至少部份的解释了在后面我们讨论的推挽结构的优势。 最简单的解决方法是使用高导磁率材料铁芯,这样靠近音圈部份铁芯总是处于饱和状态,可以获得可以忽略的磁场调制电流。这个技术并不是经常使用,原因在于高导磁率材料非常昂贵。最普遍的技术方法解决 这个磁场调制/涡流问题是采用短路环。或者叫做法拉利
13、环。见图2.6。短路环应用有不同的方法。但都是 通过产生一个同音圈产生的磁场大小相等,方向相反的磁场来达到目的。图中A为将导体材料如铜覆盖 在导磁柱顶部。图2.6中B为在导磁柱上安装一个铜帽。图2.6中C为一个铜柱围绕着导磁柱。图 D为一 个短路环安装位置图,通常由铝制作,放置在导磁柱底部。屏蔽导磁柱方法附带着另外一 个好处是减少音圈电感效应,通常电感效应会引起高频段响应升高。屏蔽罩安装位置和大小可以用来调节和控制扬声器单元中频和高频段频率响应。在导磁柱底部安装一个短路环同屏蔽导磁柱方法一样可以减少 二次谐波失真,但是不能影响音圈电感以及高频单元响应。虽然应用短路法一个主要的好处是可以减少失真
14、,但是控制中频和高频单元响应同样重要。 2.30振动板:解释扬声器振动板物理原理通常通过讨论一个理想的无限大刚性活塞推动空气来理解。同无限大刚性活塞推动空气相比,扬声器单元振动板运动从频率上来讲是有界的。在低端由扬声器谐 振频率决定(在低于谐振频率的频段,扬声器能量转换受到机械限制),而高频则受到空气辐射阻抗特性所限制。空气对运动的阻力为辐射阻抗,辐射阻抗随着频率升高而减少直到某一高端频率点,此后即使升 高频率,辐射阻抗保持不变。 低于这个高端频率点,能量转换显示稳定的衰减,它是空气辐射阻抗和辐射表面积函数。小的辐射表面积同大的辐射表面积相比,可以重放更高的频率。实际上,通常使用不同口径的扬声
15、器来覆盖重放不同的频 段。现实世界中,振动板不是绝对刚体。并且使用不同的材料制造,形变特性也不一样。振动板形变对单元高频辐射效率,频率响应和指向特性影响很大。虽然不同的材料具有不同的硬度,同时内部对振动传递速度 2.31振动板谐振模式 :振动板有两类振动模式:放射型和同心型被应用于分析扬声器振膜振动。由图2.7描绘。放射型振膜振动 从振动板中央扩散到振动板边缘。通常发生在低频段,并且在实际中作用被认为为次要影响的振膜振动。 同心型振膜振动,由围绕振动板中央的一系列波纹或涟漪组成。这些同心型振动模式,通过全息照相可看到波纹数量随着频率不同而变化,并且当改变频率时,一些波纹被反射回到中部,形成干涉
16、图案。这些波纹或涟漪以一种非常复杂形态来推动空气,并且一些同音圈相位相同,另一些则相位不同。在图2.7中,振 动板正负区域表示他们相位相反。这个复杂的叠加和抵消关系被称作振动板分割振动,在扬声器典型频率响应曲线中,产生很多峰和谷。当频率上升时,振动板有效辐射面积将会减少,所以在很高频率,倾 向于只有在振动板中央才发生辐射。在一些频率点,振动板有效辐射振动质量变小,声输出陡斜下降,被称为高频截止频率。为了获得高的高频截止频率,振动板质量同音圈质量比例越小越好。高频截止频率另外还受到音圈电感影响2.32振动板指向性 :当频率升高时,所有扬声器都表现出指向特性,并且高频输出成为一束声波,好像汽车车灯
17、发出的灯光。在声音波长(=c/f)比振动板周长大一些时,辐射为一个球面。当频率上升,波长等于或小于振动板周长 时,辐射图案变得相当尖锐。图0.8给出不同口径振动板-6dB点频率/偏离轴向角度曲线。 2.33振动板形状:不同形状振动板具有不同的响应特性。振动板设计有两种基本形状:圆锥型或平面型,以及凸面形。锥体形状振动板在响应范围高频段,倾向于有一个高的峰。峰的位置部份的由锥体角度决定。同凸面形振动板 相比,它的带宽要宽一些。凸面形振动板趋向具有平滑的频率响应,并且在高端具有一个不太尖锐的峰(意味着高频响应效率低)。但是同锥形振动板相比,带宽要窄一点。通过改变凸面形振动板曲率,可 以改变和控制扬
18、声器频率特性 2.34防尘罩:扬声器的磁隙宽度可以从大口径的几个毫米到小口径高音的一张厚纸那么小。磁隙宽度尽量越小越好,这样可以使振动的音圈获得最大磁场驱动力,同时容易散热。当音圈同振动板相粘接时,从导磁柱到音圈之 间空间通常采用精密定位填充模具来安装定位。这个装配过程使导磁柱和音圈之间空间对外部灰粒暴露出来。这样,可能会有一些灰粒存留在这个空间之中,产生一些问题。传统解决办法是固定一个封闭罩,也就是防尘罩,来密封这个空间。 将一个防尘罩安装在振动板和音圈粘接部位上方,解决了一个问题,但是,又带来其他问题。安装在振动板上的防尘罩有两种基本类型:固体材料和多孔材料。固体材料防尘罩不让空气通过它的
19、表面,并且生成一个 小气室,当振动板前后移动时,使导磁柱上面空气压力发生变化。这个使空气压缩和稀薄作用,对扬声器工作产生不好的影响。 由于音圈和导磁柱之间面积太小,不能有效的减缓由防尘罩运动产生的压力,生产商通常采用两种方法解 决这个问题。第一个是采用有通气孔的导磁柱,也就是在导磁柱中间钻一个小孔,以便使空气可以进出。另外一个方法是在音圈上打一些孔,这样允许空气流出小气室,同时减少导磁柱和防尘罩之间压力。多孔的防尘罩同样可以减轻导磁柱上方空气压力。但是产生其他问题。首先他们提供了箱体一条泄漏通道,同折环泄漏损失相比,由于通过磁隙的泄漏空气体积很小,这个问题还不是太可怕。另外一个问题 是当振动板
20、向导磁柱运动时,空气被压迫,通过防尘罩跑到振动板辐射表面。这个突然喷出的空气同振动板辐射空气相位相反。会产生频率响应问题。但是将影响频率响应的多孔的防尘罩封死,也不见得是 一个好主意,因为原来设计中,也许利用多孔的防尘罩散热。空气通过磁隙范围内时,对音圈温度上升有很好的冷却效果。封闭防尘罩还会造成顺性和Q值产生不希望的变化。 防尘罩还会改变扬声器单元高频频率响应。由于在高频频段时,振动板趋向由中间部份来辐射能量,此时,防尘罩材料和形状对形成单元高频响应作用极大。封闭固体防尘罩比多孔的防尘罩对高频特性影 响要大。偶尔,有时你会发现在固体防尘罩上打几个小孔,用来减轻空气压力,可以得到两种类型防尘罩
21、共同优点。2.35球顶形状:同振动板声学特性相比,球顶高音和中音有自己的特点。球顶振膜两种基本类型为凸型球顶振膜和凹型球顶振膜。在高频,凹型球顶振膜通常具有相当高的辐射效率。但是指向特性比较尖锐。高效率原因, 首先是因为凹型球顶振膜谐振,生成一个比较宽的谐振峰(当然它可以被阻尼掉一些)。凸型球顶振膜 2.40悬置系统:在扬声器中,悬置系统通常包括两部份,折环和定心支片。折环通常由橡胶,泡沫海棉和经过处理压成不同形状的亚麻布制作,折环协助振动板保持中心位置并且提供一个恢复力,使音圈保持在磁隙之中。 折环还可以为振动板边缘提供阻尼。定心支片通常用亚麻布制成波浪形状,可以保持音圈同导磁柱同心。并且同
22、样提供一个恢复力,使音圈保持在磁隙当中。 2.41折环:折环和定心支片总硬度,通常体现为振动板容易移动的程度,或称为顺性(顺性正好和硬度相反),在扬声器总的顺性之中,定心支片作用占了约80%,折环占了20%。折环有两个重要的功能,它的基本作用是保持音圈和导磁柱同心。但是,对振膜边缘向外辐射的振动进行阻尼同样非常重要。折环采用的材料 和厚度可以极大的改变扬声器频率特性。折环对振动板振动阻尼和防止振动反射回到振动板上的能力,可以改变振动板分割振动的振幅和相位,所以在振动板设计时,要一起考虑设计折环,它也是改善频率 响应的工具之一。 2.42定心支片:定心支片有不同的功能,它的第二个作用是使音圈和导
23、磁柱同心,并且为防止外部灰尘进入磁隙提供了一个屏障,但是它的最基本作用是为扬声器振动板提供一个恢复力。它的硬度为决定扬声器的谐振频率 fs=1/2x3.14(CsMD)1/2 这里: fs=扬声器单元自由场谐振频率;Cs=扬声器单元顺性;MD=扬声器单元总的振动质量(包括:振动板、音圈、定心支片和折环重量,同时再加上空气负载) 2.43线性良好的支撑悬置系统:显然,一个性能良好的扬声器悬置系统能为振动系统提供恒定的恢复力,在封闭式音箱之中,由于音箱内部空气具有劲度,表现为对振动板施加一个恢复力。但是,在倒相式音箱之中,刚好相反。通常,用 DonKeele的“油罐效应”来说明,会产生音圈动态偏移
24、。这个动态偏移问题,是一个非线性现象,在振动板位移超过Xmax时发生。这时,在磁隙之中,音圈匝数会越来越少,BL值也会越来越小,反向电动势减少,音圈中电流增加,推动音圈进一步离开磁隙,这样会产生失真。 一个良好的悬置系统可以消除这个非线性动态偏移问题,由定心支片和折环组成的 支撑系统,当BL值减少时,同时恢复力增加。如果悬置系统恢复力增加极限位置和BL值减少的极限位置 接近,那么就可以防止音圈加速跑到磁隙外面。这一类悬置系统,经常应用在高声压级重放的专业低音 扬声器之中,不幸的是,很多业余扬声器设计师没有意识到这一点。因为在倒相式音箱设计中使用的低音扬声器,并不是经常采用具有相当线性悬置系统的
25、低音扬声器。 2.50扬声器阻抗模型:我们所谈到的所有系统都可以使用电路数学模型来描绘分析他们的工作。这个技术是所有音箱设计计算方法的核心。扬声器的等效电路具有同这个扬声器一样的输入阻抗特性。图2.9为一个典型扬声器实测阻 抗曲线,图2.10为一个扬声器等效电路,电路元件如下: RE=扬声器直流电阻 ; REVC=由频率决定的音圈阻抗(音圈电感的实部) ; LEVC=由频率决定的音圈阻抗(音圈电感的虚部) ; MD=质量机械参数; CS=顺性机械参数 ReS=阻尼机械参数;ZB=扬声器后方辐射阻抗;ZF=扬声器前方辐射阻抗 这个模型接近由Beranek描绘的等效电路模型,不同之处在于Beran
26、ek的模型音圈阻抗为固定值,而这里为一个频率的函数。关于扬声器等效电路模型,请参看惠威制作指南Ver6.1.可以获得更加详细说明. 2.60功率、效率和房间尺寸:功率放大器输出一个给定的功率,能够发出多响的声音,可以直接反映扬声器系统的效率以及扬声器系 统激励空气的体积能力.在你制作扬声器系统之前,对于给定的听音空间,考虑扬声器系统能否达到希望 的响度声压级,是一个非常重要的问题。由于大部份扬声器是一个相当低效率的元件,效率通常从0.5% 到2%。能够输出大约多少声功率并不容易计算,如果我们考虑一个简单的典型无限障板单元,效率为0.5% ,功率放大器输出为50WRMS,那么这个系统声功率输出大
27、约为0.005x50W=0.25W声功率。图2.11曲线可以 用来估计在一个给定的房间空间之中,对于一定的声功率输出,可以产生多大的节目信号声压级。例 如:我们用上面输出0.25W声功率系统,放在一个典型容积100m3的住房之中,可以获得大约97dB的声压 响度。为了获得额外的3dB声压使总声压达到100dB,我们要将功率放大器的功率增加到100W。 取决于单元的额定功率,以及提供的额定功率是否满足扬声器单元最大温升热承受功率(很多单元在输 入低于额定功率之前,已经先烧坏)。这个0.5%效率的单元看起来输出声压级不够。除了增加功率放大 器功率输出一倍以外,另外一个办法是增加额外的一个单元,增加一个并联单元,使有效辐射面积增长 一倍,同时使声功率增大四倍。在相同的房间内,使用50W功率放大器输出,采用双单元方式可以获得1W 声功率,输出103dB声压级。而采用一个单元,如果达到同样的声压级,需要输入200W功率!
限制150内