4.2 序列相关性.ppt
《4.2 序列相关性.ppt》由会员分享,可在线阅读,更多相关《4.2 序列相关性.ppt(47页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、4.2 序列相关性,Serial Correlation,一、序列相关性概念二、实际经济问题中的序列相关性 三、序列相关性的后果四、序列相关性的检验五、具有序列相关性模型的估计六、案例,4.2 序列相关性,一、序列相关性概念,如果对于不同的样本点,随机误差项之间不再是不相关的,而是存在某种相关性,则认为出现了序列相关性。,对于模型 Yi=0+1X1i+2X2i+kXki+i i=1,2, ,n,随机项互不相关的基本假设表现为 Cov(i , j)=0 ij, i,j=1,2, ,n,或,称为一阶列相关,或自相关(autocorrelation),其中:被称为自协方差系数(coefficient
2、 of autocovariance)或一阶自相关系数(first-order coefficient of autocorrelation) i是满足以下标准的OLS假定的随机干扰项:,如果仅存在 E(i i+1)0 i=1,2, ,n,自相关往往可写成如下形式: i=i-1+i -11,由于序列相关性经常出现在以时间序列为样本的模型中,因此,本节将用下标t代表i。,二、实际经济问题中的序列相关性,大多数经济时间数据都有一个明显的特点:惯性,表现在时间序列不同时间的前后关联上。,由于消费习惯的影响被包含在随机误差项中,则可能出现序列相关性(往往是正相关 )。,例如,绝对收入假设下居民总消费函
3、数模型: Ct=0+1Yt+t t=1,2,n,1、经济变量固有的惯性,2、模型设定的偏误,所谓模型设定偏误(Specification error)是指所设定的模型“不正确”。主要表现在模型中丢掉了重要的解释变量或模型函数形式有偏误。,例如,本来应该估计的模型为 Yt=0+1X1t+ 2X2t + 3X3t + t,但在模型设定中做了下述回归: Yt=0+1X1t+ 1X2t + vt,因此, vt=3X3t + t,如果X3确实影响Y,则出现序列相关。,但建模时设立了如下模型: Yt= 0+1Xt+vt 因此,由于vt= 2Xt2+t, ,包含了产出的平方对随机项的系统性影响,随机项也呈现
4、序列相关性。,又如:如果真实的边际成本回归模型应为: Yt= 0+1Xt+2Xt2+t其中:Y=边际成本,X=产出,,3、数据的“编造”,例如:季度数据来自月度数据的简单平均,这种平均的计算减弱了每月数据的波动性,从而使随机干扰项出现序列相关。 还有就是两个时间点之间的“内插”技术往往导致随机项的序列相关性。,在实际经济问题中,有些数据是通过已知数据生成的。 因此,新生成的数据与原数据间就有了内在的联系,表现出序列相关性。,计量经济学模型一旦出现序列相关性,如果仍采用OLS法估计模型参数,会产生下列不良后果:,二、序列相关性的后果,1、参数估计量非有效,因为,在有效性证明中利用了 E(NN)=
5、2I 即同方差性和互相独立性条件。 而且,在大样本情况下,参数估计量虽然具有一致性,但仍然不具有渐近有效性。,2、变量的显著性检验失去意义,在变量的显著性检验中,统计量是建立在参数方差正确估计基础之上的,这只有当随机误差项具有同方差性和互相独立性时才能成立。,其他检验也是如此。,3、模型的预测失效,区间预测与参数估计量的方差有关,在方差有偏误的情况下,使得预测估计不准确,预测精度降低。 所以,当模型出现序列相关性时,它的预测功能失效。,三、序列相关性的检验,然后,通过分析这些“近似估计量”之间的相关性,以判断随机误差项是否具有序列相关性。,序列相关性检验方法有多种,但基本思路相同:,基本思路:
6、,三、序列相关性的检验,1、图示法,2、回归检验法,如果存在某一种函数形式,使得方程显著成立,则说明原模型存在序列相关性。,回归检验法的优点是:(1)能够确定序列相关的形式,(2)适用于任何类型序列相关性问题的检验。,3、杜宾-瓦森(Durbin-Watson)检验法,D-W检验是杜宾(J.Durbin)和瓦森(G.S. Watson)于1951年提出的一种检验序列自相关的方法,该方法的假定条件是:,(1)解释变量X非随机;(2)随机误差项i为一阶自回归形式: i=i-1+i(3)回归模型中不应含有滞后应变量作为解释变量,即不应出现下列形式: Yi=0+1X1i+kXki+Yi-1+i(4)回
7、归含有截距项,该统计量的分布与出现在给定样本中的X值有复杂的关系,因此其精确的分布很难得到。 但是,他们成功地导出了临界值的下限dL和上限dU ,且这些上下限只与样本的容量n和解释变量的个数k有关,而与解释变量X的取值无关。,杜宾和瓦森针对原假设:H0: =0, 即不存在一阶自回归,构如下造统计量:,D.W. 统计量:,D.W检验步骤:,(1)计算DW值(2)给定,由n和k的大小查DW分布表,得临界值dL和dU(3)比较、判断,若 0D.W.dL 存在正自相关 dLD.W.dU 不能确定 dU D.W.4dU 无自相关 4dU D.W.4 dL 不能确定 4dL D.W.4 存在负自相关,0
8、dL dU 2 4-dU 4-dL,正相关,不能确定,无自相关,不能确定,负相关,当D.W.值在2左右时,模型不存在一阶自相关。,证明: 展开D.W.统计量:,(*),如果存在完全一阶正相关,即=1,则 D.W. 0 完全一阶负相关,即= -1, 则 D.W. 4 完全不相关, 即=0,则 D.W.2,这里,,为一阶自回归模型 i=i-1+i 的参数估计。,4、拉格朗日乘数(Lagrange multiplier)检验,拉格朗日乘数检验克服了DW检验的缺陷,适合于高阶序列相关以及模型中存在滞后被解释变量的情形。 它是由布劳殊(Breusch)与戈弗雷(Godfrey)于1978年提出的,也被称
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 4.2 序列 相关性
限制150内