现代控制理论.doc





《现代控制理论.doc》由会员分享,可在线阅读,更多相关《现代控制理论.doc(87页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流现代控制理论.精品文档.实验九 控制系统极点的任意配置一、实验目的1掌握用全状态反馈的方法实现控制系统极点的任意配置;2用电路模拟与软件仿真的方法,研究参数的变化对系统性能的影响。二、实验设备1THBCC-1型 信号与系统控制理论及计算机控制技术实验平台2PC机1台(含上位机软件) 37针通信线1根3双踪慢扫描示波器1台(可选)三、实验内容1用全状态反馈实现二阶系统极点的任意配置,并分别用电路模拟与软件仿真予于实现;2用全状态反馈实现三阶系统极点的任意配置,并分别通过电路模拟实验和软件仿真予于实现。四、实验原理由于控制系统的动态性能主要取决于
2、它的闭环极点在S平面上的位置,因而人们常把对系统动态性能的要求转化为一组希望的闭环极点。一个单输入单输出的N阶系统,如果仅靠系统的输出量进行反馈,显然不能使系统的n个极点位于所希望的位置。基于一个N阶系统有N个状态变量,如果把它们分别作为系统的反馈信号,则在满足一定的条件下就能实现对系统极点的任意配置,这个条件是系统能控。理论证明,通过状态反馈的系统,其动态性能一定要优于只有输出反馈的系统。本实验分别研究二阶和三阶系统的状态反馈,有关理论的说明和实验系统的模拟电路,请参见附录。五、实验步骤1典型二阶系统1) 设计一个二阶系统的模拟电路(可参考本实验附录),测取其阶跃响应,并与软件仿真的结果相比
3、较。2) 根据上面的典型二阶系统,用极点配置的方法,设计一个全状态反馈的增益矩阵。3) 按确定的参数设计构建系统的模拟电路,测取其阶跃响应,并与软件仿真结果相比较。2典型三阶系统1) 设计一个三阶系统的模拟电路(可参考本实验附录),测取其阶跃响应,并与软件仿真的结果相比较。2) 根据上述的三阶系统,用极点配置的方法设计全状态反馈的增益矩阵。3) 按确定的参数设计并构建系统的模拟电路,测取其阶跃响应,并与软件仿真的结果相比较。以上两步骤中,测取阶跃响应以及系统软件仿真的具体操作方法请参阅“实验一”的实验步骤2和3。六、实验报告要求 1画出二阶和三阶系统的模拟电路图,并实测它们的阶跃响应曲线和动态
4、性能。 2根据对系统性能指标的要求,确定系统希望的闭环特征多项式。 3令引入状态反馈后系统的闭环特征多项式同希望的特征多项式相等,确定状态反馈增益矩阵。 4画出引入状态反馈后的二阶和三阶系统的电路图,并由实验测量它们的阶跃响应曲线。七、实验思考题 1系统极点能任意配置的充要条件是什么? 2为什么引入状态反馈后的系统,其性能一定会优于只有输出反馈的系统? 3图9-1所示的系统引入状态反馈后,能不能使输出的稳态值高于给定值?八、附录1典型二阶系统全状态反馈的极点配置 二阶系统方框图如9-1所示。 图9-1 二阶系统的方框图1) 由图得 , 令:, 则得 2) 检查能控性 因为 所以系统完全能控,即
5、极点能任意配置。 3) 由性能指标确定希望的闭环极点 令性能指标: , 由 ,选择 ,选择 1/S于是求得希望的闭环极点 希望的闭环特征多项式为 (1)4) 确定状态反馈系数K1和K2引入状态反馈后系统的特征方程式为 (2)由式(1)、 (2)解得 5) 引入状态反馈后的方框图和模拟电路图为图9-2 引入状态反馈后的二阶系统方框图图9-3 引入状态反馈前的二阶系统模拟电路图图9-4 引入状态反馈后的二阶系统模拟电路图 其中:Rx1=50K Rx2=666.6K 6) 观察加状态反馈前后系统的阶跃响应曲线。2.典型三统全阶系状态反馈的极点配置1) 系统的方框图为图9-4 三阶系统的方框图2) 模
6、拟系统的电路图如图9-4所示 图9-4 引入状态反馈后的三阶系统模拟电路图3) 状态方程 由图得: 0 X X+R4)检查能控性图9-6 引入状态反馈后的三阶系统方框图因为 Rankb Ab A2b=Rank =3 所以系统能控,其极点能任意配置。 设一组理想的闭环极点为: P1=-10,P2,3=-2j2 则由它们所组成的希望的闭环特征多项式为 (3)5) 确定状态反馈矩阵K detSI-(A-Bk)=S(S+2)(S+5+5K3)+2(S+5K1)+10SK2 (4) 由式(3)、(4)得 7+5K3=14 K3=1.4 10+10K2+10K3=48 K2=2.4 10+10K1=80
7、K1=7 所以: Rx1=28.5k Rx2=83k Rx3=142k6) 引入状态反馈后的模拟电路图如图9-7所示。图9-7 引入状态反馈后的三阶系统模拟电路图实验十 具有内部模型的状态反馈控制系统一、实验目的1通过实验进一步了解内模控制的原理;2掌握具有内部模型的状态反馈设计的方法。二、实验设备1THBCC-1型 信号与系统控制理论及计算机控制技术实验平台2PC机1台(含上位机软件) 37针通信线1根3双踪慢扫描示波器1台(可选)三、实验内容 1不引入内部模型,按附录中式(1)要求设计该系统的模拟电路,并由实验求取其阶跃响应和稳态输出; 2设计该系统引入内部模型后系统的模拟电路,并由实验观
8、测其阶跃响应和稳态输出。四、实验原理系统极点任意配置(状态反馈),仅从系统获得满意的动态性能考虑,即使系统具有一组希望的闭环极点,而不能保证系统无静差。为此,本实验在上一实验的基础上,增加了系统内部模型控制。经典控制理论告诉我们,在系统的开环传递函数中,若含有某控制信号的极点,则该系统对此输入信号就无误差产生。据此,在具有状态反馈系统的前向通道中引入R(s)的模型,这样使系统既具有理想的动态性能,又有对该输入R(s)无静差产生。有关具有内部模型的状态反馈系统的设计及实验系统的模拟电路,请参见附录。五、实验步骤1利用实验台上的模拟电路单元,设计(参考本实验附录)并连接一个内部模型控制系统的模拟电
9、路。2无上位机时,利用实验平台上的阶跃信号发生器产生一个阶跃信号(最大值不能超过0.6V)作为系统的输入,用示波器观测该系统的输入与输出。3有上位机时,则充分利用上位机提供的虚拟示波器与信号发生器的功能完成实验,具体操作步骤请参阅“实验一”的实验步骤3。六、实验报告要求 1画出不引入内部模型,只有状态反馈系统的模拟电路图,并由实验作出它的阶跃响应曲线和稳态输出。 2画出引入内部模型后系统的模拟电路图,并由实验作出它的阶跃响应曲线和稳态输出。七、实验思考题 1试从理论上解释引入内部模型后系统的稳态误差为零的原因? 2如果输入,则系统引入的内部模型应作如何变化?八、附录1内模控制实验原理 , 令参
10、考输入:, r为阶跃信号,则有 , (1) 若令 ,为两个中间变量,则得 (2) 把(1)、(2)写成下面矩阵形式 (3) 若式(3)能控,则可求得如下形式的状态反馈 这不仅使系统能稳定,而且实现了稳态误差为零。对式(4)积分得 引入参考输入的内部模型后系统的方框图如下图所示:图10-1 具有内部模型系统的方框图 2内模控制器的设计 1) 已知给定对象的动态方程为 , (4)试设计一控制器,使校正后的系统不仅具有良好的动态性能,而且能以零稳态误差跟踪阶跃输入根据式(3)得设闭环系统的希望极点为,则得希望的闭环特征方程式为 (5)2) 引入状态反馈后系统的特征式为 (6)对比(5)、(6)式得
11、,3) 校正后系统的方框图和实验系统的模拟电路分别为图10-2和图10-3所示。 图10-2 校正后系统的方框图 图10-3 校正后系统的模拟电路图实验十一 状态观测器及其应用一、实验目的 1. 通过实验进一步了解状态观测器的原理与结构组成; 2用状态观测器的状态估计值对系统的极点进行任意配置。二、实验设备1THBCC-1型 信号与系统控制理论及计算机控制技术实验平台2PC机1台(含上位机软件) 37针通信线1根3双踪慢扫描示波器1台(可选)三、实验内容1设计受控系统和相应状态观测器的模拟电路图。2观测实验系统的状态与观测器的状态估计值两者是否一致。3观测实际系统在状态反馈前的阶跃响应和用观测
12、器的状态进行反馈后的阶跃响应。四、实验原理 状态反馈虽然能使系统获得满意的动态性能,但对于具体的控制系统,由于物理实现条件的限制,不可能做到系统中的每一个状态变量x都有相应的检测传感器。为此,人们设想构造一个模拟装置,使它具有与被控系统完全相同的动态方程和输入信号。由于这种模拟装置的状态变量都能被检测,因此可采用它作为被控系统的状态进行反馈,这个模拟装置称为系统的状态观测器。 为了能使在不同的初始状态,使能以最快的速度趋于实际系统的状态,必须把状态观测器组成闭环形式,且它的极点配置距S平面虚轴的距离至少大于状态反馈系统的极点距虚轴的距离的五倍。 有关本实验中状态观测器的具体设计和实验系统的模拟
13、电路,请参见附录。五、实验步骤1.利用实验台上的模拟电路单元,设计(参考本实验附录)并连接一个具有状态观测器的模拟电路。2.无上位机时,利用实验平台上的阶跃信号发生器产生一个阶跃信号(一般为1V左右)作为系统的输入,用示波器观测该系统的输入与输出,同时也可观测与,与测试点的跟踪情况。3.有上位机时,则充分利用上位机提供的虚拟示波器与信号发生器的功能完成实验,具体操作步骤请参阅“实验一”的实验步骤3。六、实验报告要求 1根据对系统和观测器的动态性能要求,分别设计状态反馈矩阵K和观测器的校正矩阵G。 2画出受控系统和观测器的模拟电路图。 3根据实验结果,分别画出实际系统的状态与观测器的状态估计值的
14、曲线。 4根据实验结果,分别画出未加状态反馈前系统的阶跃响应曲线和用观测器的状态估计值进行反馈后系统的阶跃响应曲线。 5讨论分析实验结果。七、实验思考题 1观测器中的校正矩阵G起什么作用? 2观测器中矩阵(A-GC)极点能任意配置的条件是什么? 3为什么观测器极点要设置得比系统的极点更远离于S平面的虚轴?八、附录 1状态反馈的设计设二阶系统的原理方框图如图11-1所示。图11-1 二阶系统的原理方框图 , 已知系统能控和能观,状态变量X1和X2均不能测量,试用状态反馈使闭环系统的阻尼比,根据给定的和,求得系统的闭环极点 相应的特征方程为 (1)因为能控,所以闭环极点能任意配置,令 ,则状态反馈
15、后系统的闭环特征多项式为: (2)对比式(1)、(2)得 K1=1,K2=0.414 2、状态观测器的设计 状态观测器的状态方程为 令 , (3) 为使x尽快地趋于实际的状态X,要求观测器的特征值远小于闭环极点的实部,现设观测器的特征值S1,2=-5,据此得 (4) 比较(3)、(4)得g1+g2=25g1+1=10即 g1=9,g2=16 于是求得观测器的状态方程为 用观测器的状态估计值构成系统的控制量为 图11-2和11-3分别为用观测器的状态估计值对系统进行状态反馈的方框图和模拟电路图。图11-2 观测器的方框图 图11-3 观测器的模拟电路实验十二 采样控制系统的混合仿真一、实验目的1
16、掌握用数字模拟混合仿真的方法研究采样控制系统;2研究开环增益K和采样周期T的变化对系统动态性能的影响;3观察系统在阶跃和斜坡作用下的稳态误差。二、实验设备1THBCC-1型 信号与系统控制理论及计算机控制技术实验平台2PC机1台(含上位机软件) 37针通信线1根3双踪慢扫描示波器1台(可选)三、实验内容1利用实验平台设计一个二阶被控对象的模拟电路,并用上位机组成一个数模混合仿真的采样控制系统;2分别改变数字控制器的放大系数和采样周期,研究它们对系统动态性能及稳态精度的影响。四、实验步骤1设计一个二阶被控对象的模拟电路(具体可参考本实验附录的图12-1),接线时除被控对象外,还需把采集卡接口单元
17、的输出端DA1与被控对象的输入端相连,对象的输出端则与采集卡接口单元中的输入端AD1相连,同时并接好采集卡接口单元与PC上位机的并口通信线。待检查电路接线无误后,接通实验平台的电源总开关,并开启5V,15V直流稳压电源。2启动“THBCC-1”软件,待计算机出现“登录窗口”后,其具体操作步骤如下: 在用户“登录窗口”中输出自己的学号,并点击“登录”按钮进入软件主窗口。 点击工具栏上的“实验选择”按钮,选择相应的实验项目。 点击 “通道设置”按钮,选择相应的数据采集通道,然后点击“开始采集”按钮,进行数据采集。 点击 “脚本编辑器”按钮,并使用VBScript脚本语言进行编程,待编程完毕后,点击
18、“运行”按钮,进行程序调试并运行。 点击“虚拟示波器”按钮,选择“X-t”图显示模式观测实验波形。 点击“暂停”及“存储”按钮”,保存实验波形。五、实验报告要求 1按图12-1所示的方框图画出相应的模拟电路图。 2根据图12-2构建该系统的实验电路。 3研究数字控制器的不同KP值对系统动态和稳态精度的影响,并画出系统的阶跃响应曲线。 4研究采样周期T的变化对系统性能的响应。 六、实验思考题 1二阶线性连续定常系统,不论开环增益K多大,闭环系统总是稳定的,而为什么离散后的二阶系统在K大到某一值时会产生不稳定? 2试分析采样周期T的变化对系统性能的影响?七、附录 1二阶被控对象的模拟电路图图12-
19、1 被控对象的方框图图12-1 被控对象的方框图由图12-1可知,被控对象的传递函数为 其模拟电路图如图12-2所示。 12-2 被控对象的模拟电路图。2采样控制系统的方框图及其实现图12-3 和图12-4分别为采样控制系统的方框图和结构图图12-3 采样控制系统的方框图 图12-4 采样控制系统的结构图3理论计算由方框图得, 由于中有一个Z=1的极点,故它属于型系统,跟踪阶跃输入稳态误差,若令T=1S,则得特征方程, 系统不稳定。 若开环增益,则方程为 , 系统稳定。实验十三 采样控制系统串联校正的混合仿真研究一、实验目的 1掌握用数模混合仿真的方法研究采样控制系统; 2掌握采样控制系统数字
20、控制器的设计方法。二、实验设备1THBCC-1型 信号与系统控制理论及计算机控制技术实验平台2PC机1台(含上位机软件) 37针通信线1根3双踪慢扫描示波器1台(可选)三、实验内容 1利用本实验装置设计并构造一个具有被控对象为二阶环节的模拟电路,且用上位机与之组成混合仿真系统; 2根据被控对象的传递函数和性能指标的要求,设计一个数字控制器; 3改变数字控制器的参数,观察对采样控制系统动态性能的影响。四、实验步骤1设计一个二阶被控对象的模拟电路(具体可参考本实验附录的图13-1),接线时除被控对象外,还需把采集卡接口单元的输出端DA1与被控对象的输入端相连,对象的输出端则与采集卡接口单元中的输入
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 现代 控制 理论

限制150内