用双线性变换法设计IIR数字低通滤波器课程设计.doc
《用双线性变换法设计IIR数字低通滤波器课程设计.doc》由会员分享,可在线阅读,更多相关《用双线性变换法设计IIR数字低通滤波器课程设计.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流用双线性变换法设计IIR数字低通滤波器课程设计.精品文档. V=课程设计报告书姓名: 班级: 学号: 时间: 设计题目用双线性变换法设计IIR数字低通滤波器设计要求1. 通过实验加深对双线性变换法设计IIR滤波器基本方法的了解。 2了解MATLAB有关双线性变换法的子函数。3 掌握用双线性变换法设计数字低通滤波器的方法。本次课程设计是采用双线性变换法基于MATLAB设计一个IIR数字低通滤波器,其中要求通带截止频率为p=0.25;通带最大衰减Rp=1dB;阻带最小衰减As=15dB;阻带截止频率s=0.4;滤波器采样频率Fs=100Hz.设计
2、过程摘要:根据IIR滤波器的特点,在MATLAB坏境下用双线性变换法设计IIR数字滤波器。利用MATLAB设计滤波器,可以随时对比设计要求和滤波器特性调整参数,直观简便,极大的减轻了工作量,有利于滤波器设计的最优化。关键词:双线性变换法 ,数字滤波器 ,MATLAB ,IIR1. 设计原理与步骤1.1设计原理滤波器的种类很多,从功能上可分为低通、高通、带通和带阻滤波器,每一种又有模拟滤波器和数字滤波器两种形式。如果滤波器的输人和输出都是离散时间信号,则该滤波器的冲击响应也必然是离散的,这种滤波器称之为数字滤波器。数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频
3、域滤波的目的。数字滤波器也是具有一定传输选择特性的数字信号处理装置,其输入、输出均为数字信号,实质上是一个由有限精度算法实现的线性时不变离散系统。IIR数字滤波器采用递归型结构,即结构上带有反馈环路。IIR滤波器运算结构通常由延时、乘以系数和相加等基本运算组成,可以组合成直接型、正准型、级联型、并联型四种结构形式,都具有反馈回路。数字滤波器根据其冲激响应函数的时域特性,可分为两种,即无限长冲激响应(IIR)数字滤波器和有限长冲激响应(FIR)数字滤波器。IIR 数字滤波器的特征是,具有无限持续时间冲激响应,需要用递归模型来实现,其差分方程为:(1-1) (1-2)设计IIR滤波器的任务就是寻求
4、一个物理上可实现的系统函数H(z),使其频率响应H(z)满足所希望得到的频域指标,即符合给定的通带截止频率、阻带截止频率、通带衰减系数和阻带衰减系数。本次课程设计采用双线性变换法。1.2设计步骤:(1)将给出的数字滤波器的技术指标转换为模拟滤波器的技术指标;(2)根据转换后的技术指标设计模拟低通滤波器H(s);(3)在按一定规则将H(s)转换为H(z);若所设计的数字滤波器是低通的,那么上述设计工作可以结束,若所设计的是高通、带通或者带阻滤波器,那么还有步骤: (4)将高通、带通或者带阻数字滤波器的技术指标先转化为低通滤波器的技术指标,然后按上述步骤(2)设计出模拟低通滤波器H(s),再将H(
5、s)转换为所需的H(z)。 2.设计方案 IIR数字滤波器是一种离散时间系统,其系统函数为 (1-3)假设MN,当MN时,系统函数可以看作一个IIR的子系统和一个(M-N)的FIR子系统的级联。IIR数字滤波器的设计实际上是求解滤波器的系数和 ,它是数学上的一种逼近问题,即在规定意义上(通常采用最小均方误差准则)去逼近系统的特性。如果在S平面上去逼近,就得到模拟滤波器;如果在z平面上去逼近,就得到数字滤波器。实现IIR数字滤波器的设计有双线性变换法和脉冲响应不变法两种基本方案,现在就对两种基本方案的优劣进行具体论证,从而说明选择方案一的理由。方案一: 双线性变换法设计IIR数字滤波器双线性变换
6、法主要是采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到-/T/T之间,再用z=esT转换到Z平面上。也就是说,第一步先将整个S平面压缩映射到S1平面的-/T/T一条横带里;第二步再通过标准变换关系z=es1T将此横带变换到整个Z平面上去。这样就使S平面与Z平面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱混叠现象,映射关系如图1所示。 图1双线性变换的映射关系为了将S平面的整个虚轴j压缩到S1平面j1轴上的-/T到/T段上,可以通过以下的正切变换实现(1-4)式中,T仍是采样间隔。当1由-/T经过0变化到/T时,由-经过0变化到+,也即映射了整个j轴。将式(1-4)写成将此
7、关系解析延拓到整个S平面和S1平面,令j=s,j1=s1,则得(1-5)再将S1平面通过以下标准变换关系映射到Z平面z=es1T从而得到S平面和Z平面的单值映射关系为:(1-6) (1-7) 式(1-6)与式(1-7)是S平面与Z平面之间的单值映射关系,这种变换都是两个线性函数之比,因此称为双线性变换式(1-5)与式(1-6)的双线性变换符合映射变换应满足的两点要求。首先,把z=ej,可得(1-8)即S平面的虚轴映射到Z平面的单位圆。其次,将s=+j代入式(1-8),得因此由此看出,当0时,|z|0时,|z|1。也就是说,S平面的左半平面映射到Z平面的单位圆内,S平面的右半平面映射到Z平面的单
8、位圆外,S平面的虚轴映射到Z平面的单位圆上。因此,稳定的模拟滤波器经双线性变换后所得的数字滤波器也一定是稳定的。方案二: 脉冲响应不变法设计IIR数字滤波器脉冲响应不变法是从滤波器的脉冲响应出发,使数字滤波器的单位脉冲响应序列h(n)模仿模拟滤波器的冲激响应ha(t),即将ha(t)进行等间隔采样,使h(n)正好等于ha(t)的采样值,满足h(n)=ha(nT)式中,T是采样周期。如图1所示。如果令Ha(s)是ha(t)的拉普拉斯变换,H(z)为h(n)的Z变换,利用采样序列的Z变换与模拟信号的拉普拉斯变换的关系得(1-9)可看出,脉冲响应不变法将模拟滤波器的S平面变换成数字滤波器的Z平面,这
9、个从s到z的变换z=esT是从S平面变换到Z平面的标准变换关系式。图2脉冲响应不变法的映射关系由(1-9)式,数字滤波器的频率响应和模拟滤波器的频率响应间的关系为(1-10)这就是说,数字滤波器的频率响应是模拟滤波器频率响应的周期延拓。正如采样定理所讨论的,只有当模拟滤波器的频率响应是限带的,且带限于折叠频率以内时,即(1-11)才能使数字滤波器的频率响应在折叠频率以内重现模拟滤波器的频率响应,而不产生混叠失真,即| (1-12)但是,任何一个实际的模拟滤波器频率响应都不是严格限带的,变换后就会产生周期延拓分量的频谱交叠,即产生频率响应的混叠失真,如图2所示。这时数字滤波器的频响就不同于原模拟
10、滤波器的频响,而带有一定的失真。当模拟滤波器的频率响应在折叠频率以上处衰减越大、越快时,变换后频率响应混叠失真就越小。这时,采用脉冲响应不变法设计的数字滤波器才能得到良好的效果。图3脉冲响应不变法中的频响混叠现象对某一模拟滤波器的单位冲激响应ha(t)进行采样,采样频率为fs,若使fs增加,即令采样时间间隔(T=1/fs)减小,则系统频率响应各周期延拓分量之间相距更远,因而可减小频率响应的混叠效应。两种方案优缺点比较:脉冲响应不变法的最大缺点是有频率响应的混叠效应。所以,脉冲响应不变法只适用于限带的模拟滤波器(例如,衰减特性很好的低通或带通滤波器),而且高频衰减越快,混叠效应越小。至于高通和带
11、阻滤波器,由于它们在高频部分不衰减,因此将完全混淆在低频响应中。如果要对高通和带阻滤波器采用脉冲响应不变法,就必须先对高通和带阻滤波器加一保护滤波器,滤掉高于折叠频率以上的频率,然后再使用脉冲响应不变法转换为数字滤波器。当然这样会进一步增加设计复杂性和滤波器的阶数。双线性变换法与脉冲响应不变法相比,其主要的优点是避免了频率响应的混叠现象。这是因为S平面与Z平面是单值的一一对应关系。S平面整个j轴单值地对应于Z平面单位圆一周,即频率轴是单值变换关系。这个关系如式(1-8)所示,重写如下:上式表明,S平面上与Z平面的成非线性的正切关系,如图4所示。由图4看出,在零频率附近,模拟角频率与数字频率之间
12、的变换关系接近于线性关系;但当进一步增加时,增长得越来越慢,最后当时,终止在折叠频率=处,因而双线性变换就不会出现由于高频部分超过折叠频率而混淆到低频部分去的现象,从而消除了频率混叠现象。图4双线性变换法的频率变换关系但是双线性变换的这个特点是靠频率的严重非线性关系而得到的,如式(1-8)及图2所示。由于这种频率之间的非线性变换关系,就产生了新的问题。首先,一个线性相位的模拟滤波器经双线性变换后得到非线性相位的数字滤波器,不再保持原有的线性相位了;其次,这种非线性关系要求模拟滤波器的幅频响应必须是分段常数型的,即某一频率段的幅频响应近似等于某一常数(这正是一般典型的低通、高通、带通、带阻型滤波
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 双线 变换 设计 IIR 数字 滤波器 课程设计
限制150内