《电力电子技术.doc》由会员分享,可在线阅读,更多相关《电力电子技术.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流电力电子技术.精品文档.绪论信息电子技术信息处理电力电子技术电力变换电子技术一般即指信息电子技术,广义而言,也包括电力电子技术 电力电子技术使用电力电子器件对电能进行变换和控制的技术,即 应用于电力领域的电子技术。 目前电力电子器件均用半导体制成,故也称电力半导体器件。 电力电子技术变换的“电力”,可大到数百MW甚至GW,也可小到数W甚至mW级。1.2 两大分支电力电子器件制造技术电力电子技术的基础,理论基础是半导体物理。 变流技术(电力电子器件应用技术) 用电力电子器件构成电力变换电路和对其 进行控制的技术,以及构成电力电子装置 和电力电子
2、系统的技术。 电力电子技术的核心,理论基础是电路理论变流技术 电力交流和直流两种 从公用电网直接得到的是交流,从蓄电池和干电池得到的是直流。 电力变换四大类 交流变直流、直流变交流、直流变直流、交流变交流进行电力变换的技术称为 变流技术。1.3 与相关学科的关系与电子学(信息电子学)的关系 都分为器件和应用两大分支。 器件的材料、工艺基本相同,采用微电子技术。 应用的理论基础、分析方法、分析软件也基本相同。 信息电子电路的器件可工作在开关状态,也可工作在放大状态;电力电子电路的器件一般只工作在开关状态。 二者同根同源。与电力学(电气工程)的关系 电力电子技术广泛用于电气工程中高压直流输电静止无
3、功补偿电力机车牵引交直流电力传动电解、电镀、电加热、高性能交直流电源 国内外均把电力电子技术归为电气工程的一个分支。 电力电子技术是电气工程学科中最为活跃的一个分支。与控制理论(自动化技术)的关系 控制理论广泛用于电力电子系统中。 电力电子技术是弱电控制强电的技术, 是弱电和强电的接口;控制理论是这种接口的有力纽带。 电力电子装置是自动化技术的基础元件和 重要支撑技术1.4 地位和未来 电力电子技术和运动控制一起,和计算机技术共同成 为未来科学技术的两大支柱。 计算机 人脑 电力电子技术 消化系统和循环系统 电力电子运动控制 肌肉和四肢 电力电子技术是电能变换技术,是把粗电变为精电的技术, 能
4、源是人类社会的永恒话题,电能是最优质的能源, 因此,电力电子技术将青春永驻。 一门崭新的技术,21世纪仍将以迅猛的速度发展。2 电力电子技术的发展史 历史是人类社会的一面镜子分析过去、现在有助于把握未来 科学史是科学家的一面镜子了解一门学科的过去、现在有助于把握未来电力电子技术的发展史是以电力电子器件的发展史为纲的。3 电力电子技术的应用 一般工业: 交直流电机、电化学工业、冶金工业 交通运输: 电气化铁道、电动汽车、航空、航海 电力系统: 高压直流输电、柔性交流输电、无功补偿 电子装置电源: 为信息电子装置提供动力 家用电器: “节能灯”、变频空调 其他: UPS、 航天飞行器、新能源、发电
5、装置1)一般工业2)交通运输3)电力系统4)电子装置用电源5)家用电器 总之,电力电子技术的应用范围十分广泛,激发人们学习、研究电力电子技术并使其飞速发展。 电力电子装置提供给负载的是各种不同的电源,因此可以说,电力电子技术研究的也就是电源技术。 电力电子技术对节省电能有重要意义。特别在大型风机、水泵采用变频调速,在使用量十分庞大的照明电源等方面,因此它也被称为是节能技术。第一章电力电子器件概念: 电力电子器件(Power Electronic Device) 可直接用于主电路中,实现电能的变换或控制的电子器件。 主电路(Main Power Circuit) 电气设备或电力系统中,直接承担电
6、能的变换或控制任务的电路。2)分类: 电真空器件 (汞弧整流器、闸流管) 半导体器件 (采用的主要材料硅)仍然3)同处理信息的电子器件相比的一般特征: 能处理电功率的能力,一般远大于处理信息的电子器件。 电力电子器件一般都工作在开关状态。 电力电子器件往往需要由信息电子电路来控制。 电力电子器件自身的功率损耗远大于信息电子器件,一般都要安装散热器。电力电子器件的损耗主要损耗通态损耗断态损耗开关损耗开通损耗关断损耗 通态损耗是器件功率损耗的主要成因。 器件开关频率较高时,开关损耗可能成为器件功率损耗的主要因素。1.1.2 应用电力电子器件系统组成电力电子系统:由控制电路、驱动电路、保护电路 和以
7、电力电子器件为核心的主电路组成。1.1.3 电力电子器件的分类按照器件能够被控制的程度,分为以下三类: 半控型器件(Thyristor) 通过控制信号可以控制其导通而不能控制其关断。 全控型器件(IGBT,MOSFET) 通过控制信号既可控制其导通又可控制其关 断,又称自关断器件。 不可控器件(Power Diode) 不能用控制信号来控制其通断, 因此也就不需要驱动电路。按照驱动电路信号的性质,分为两类: 电流驱动型 通过从控制端注入或者抽出电流来实现导通或者 关断的控制。 电压驱动型 仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。1.2 不可控器件电力二极管引言
8、Power Diode结构和原理简单,工作可靠,自20世纪50年代初期就获得应用。 快恢复二极管和肖特基二极管,分别在中、高频整流和逆变,以及低压高频整流的场合,具有不可替代的地位。1.2.1 PN结与电力二极管的工作原理PN结的电容效应: PN结的电荷量随外加电压而变化,呈现电容效应,称为结电容CJ,又称为微分电容。 结电容按其产生机制和作用的差别分为势垒电容CB和扩散电容CD。 电容影响PN结的工作频率,尤其是高速的开关状态。1.2.2 电力二极管的基本特性1) 静态特性 主要指其伏安特性 门槛电压UTO,正向电流IF开始明显增加所对应的电压。 与IF对应的电力二极管两端的电压即为其正向电
9、压降UF 。 承受反向电压时,只有微小而数值恒定的反向漏电流。IOIFUTOUFU图1-4 电力二极管的伏安特性2) 动态特性 二极管的电压-电流特性随时 间变化的 结电容的存在延迟时间:td= t1- t0, 电流下降时间:tf= t2- t1反向恢复时间:trr= td+ tf恢复特性的软度:下降时间与延迟时间 的比值tf /td,或称恢复系数,用Sr表示。 关断过程 须经过一段短暂的时间才能重新获得反向阻断能力,进入截止状态。 关断之前有较大的反向电流出现,并伴随有明显的反向电压过冲。 开通过程: 正向压降先出现一个过冲UFP,经过一段时间才趋于接近稳态压降的某个值(如 2V)。 正向恢
10、复时间tfr。 电流上升率越大,UFP越高 。1.2.3 电力二极管的主要参数1) 正向平均电流IF(AV) 额定电流在指定的管壳温度和散热条件下,其允许流过的最大工频正弦半波电流的平均值。 IF(AV)是按照电流的发热效应来定义的,使用时应按有效值相等的原则来选取电流定额,并应留有一定的裕量。2)正向压降UF 在指定温度下,流过某一指定的稳态正向电流时对应的正向压降。3) 反向重复峰值电压URRM 对电力二极管所能重复施加的反向最高峰值电压。 使用时,应当留有两倍的裕量。 4)反向恢复时间trr trr= td+ tf5)最高工作结温TJM 结温是指管芯PN结的平均温度,用TJ表示。 TJM
11、是指在PN结不致损坏的前提下所能承受的最高平均温度。 TJM通常在125175C范围之内。6) 浪涌电流IFSM 指电力二极管所能承受最大的连续一个或几个工频周期的过电流。 1.2.4 电力二极管的主要类型1) 普通二极管(General Purpose Diode) 又称整流二极管(Rectifier Diode) 多用于开关频率不高(1kHz以下)的整流电路 其反向恢复时间较长 正向电流定额和反向电压定额可以达到很高 DATASHEET2) 快恢复二极管 (Fast Recovery DiodeFRD) 简称快速二极管 快恢复外延二极管 (Fast Recovery Epitaxial D
12、iodesFRED),其trr更短(可低于50ns), UF也很低(0.9V左右),但其反向耐压多在1200V以下。 从性能上可分为快速恢复和超快速恢复两个等级。前者trr为数百纳秒或更长,后者则在100ns以下,甚至达到2030ns。 DATASHEET 1 2 33. 肖特基二极管(DATASHEET) 以金属和半导体接触形成的势垒为基础的二极管称为肖特基势垒二极管(Schottky Barrier Diode SBD 肖特基二极管的弱点 反向耐压提高时正向压降会提高,多用于200V以下。 反向稳态损耗不能忽略,必须严格地限制其工作温度。 肖特基二极管的优点 反向恢复时间很短(1040ns
13、)。 正向恢复过程中也不会有明显的电压过冲。 反向耐压较低时其正向压降明显低于快恢复二极管。 效率高,其开关损耗和正向导通损耗都比快速二极管还小。1.3 半控器件晶闸管引言 晶闸管(Thyristor):晶体闸流管,可控硅整流器(Silicon Controlled RectifierSCR)1.3.1 晶闸管的结构与工作原理 外形有螺栓型和平板型两种封装。 有三个联接端。 螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便。 平板型晶闸管可由两个散热器将其夹在中间。按晶体管的工作原理 (1-2)(1-1)(1-3)(1-4)式中a1和a2分别是晶体管V1和V2的共基极电流增益;ICB
14、O1和ICBO2分别是V1和V2的共基极漏电流。由以上式可得 :(1-5) 在低发射极电流下a 是很小的,而当发射极电流建立起来之后,a 迅速增大。 阻断状态:IG=0,a1+a2很小。流过晶闸管的漏电流稍大于两个晶体管漏电流之和。 开通状态:注入触发电流使晶体管的发射极电流增大以致a1+a2趋近于1的话,流过晶闸管的电流IA,将趋近于无穷大,实现饱和导通。IA实际由外电路决定。其他几种可能导通的情况: 阳极电压升高至相当高的数值造成雪崩效应 阳极电压上升率du/dt过高 结温较高光触发 光触发可以保证控制电路与主电路之间的良好绝缘而应用于高压电力设备中,称为光控晶闸管(Light Trigg
15、ered ThyristorLTT)。 只有门极触发是最精确、迅速而可靠的控制手段1.3.2 晶闸管的基本特性晶闸管正常工作时的特性总结如下 承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 晶闸管一旦导通,门极就失去控制作用。 承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。 要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下 。 DATASHEET1) 静态特性(1)正向特性 IG=0时,器件两端施加正向电压,只有很小的正向漏电流,为正向阻断状态。 正向电压超过正向转折电压Ubo,则漏电流急剧增大,器件开通。 随着门极电流幅值的增大,正向转折电压降低。 晶闸管
16、本身的压降很小,在1V左右。(2)反向特性 反向特性类似二极管的反向特性。 反向阻断状态时,只有极小的反相漏电流流过。 当反向电压达到反向击穿电压后,可能导致晶闸管发热损坏。2) 动态特性1) 开通过程 延迟时间td (0.51.5ms) 上升时间tr (0.53ms) 开通时间tgt以上两者之和, tgt=td+ tr (1-6)2) 关断过程 反向阻断恢复时间trr 正向阻断恢复时间tgr 关断时间tq以上两者之和tq=trr+tgr (1-7) 普通晶闸管的关断时间约几百微秒1.3.3 晶闸管的主要参数1)电压定额 断态重复峰值电压UDRM 在门极断路而结温为额定值时,允许重复加在器件上
17、的正向峰值电压。 反向重复峰值电压URRM 在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。 通态(峰值)电压UT 晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压。使用注意: 通常取晶闸管的UDRM和URRM中较小的标值作为该器件的额定电压。 选用时,一般取额定电压为正常工作时晶闸管所承受峰值电压23倍。2)电流定额 通态平均电流 IT(AV)在环境温度为40C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。标称其额定电流的参数。使用时应按有效值相等的原则来选取晶闸管。 维持电流 IH 使晶闸管维持导通所必需的最小电流。 擎住电流
18、IL 晶闸管刚从断态转入通态并移除触发信号后, 能维持导通所需的最小电流。对同一晶闸管来说,通常IL约为IH的24倍。 浪涌电流ITSM指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流 。3)动态参数除开通时间tgt和关断时间tq外,还有: 断态电压临界上升率du/dt 指在额定结温和门极开路的情况下,不导致晶闸管从断态到通 态转换的外加电压最大上升率。 电压上升率过大,使充电电流足够大,就会使晶闸管误导通 。 通态电流临界上升率di/dt 指在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。 如果电流上升太快,可能造成局部过热而使晶闸管损坏。1.3.4 晶闸管
19、的派生器件1)快速晶闸管(Fast Switching Thyristor FST) 有快速晶闸管和高频晶闸管。 开关时间以及du/dt和di/dt耐量都有明显改善。 普通晶闸管关断时间数百微秒,快速晶闸管数十微秒,高频晶闸管10ms左右。 高频晶闸管的不足在于其电压和电流定额都不易做高。 由于工作频率较高,不能忽略其开关损耗的发热效应。 DATASHEET2)双向晶闸管(Triode AC SwitchTRIAC或Bidirectional triode thyristor 可认为是一对反并联联接的普通晶闸管的集成。 有两个主电极T1和T2,一个门极G。 在第和第III象限有对称的伏安特性。
20、 不用平均值而用有效值来表示其额定电流值。 DATASHEET3)逆导晶闸管(Reverse Conducting ThyristorRCT) 将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件。 具有正向压降小、关断时间短、高温特性好、额定结温高等优点。4)光控晶闸管(Light Triggered ThyristorLTT) 又称光触发晶闸管,是利用一定波长的光照信号触发导通的晶闸管。 光触发保证了主电路与控制电路之间的绝缘,且可避免电磁干扰的影响。 因此目前在高压大功率的场合。1.4 典型全控型器件1.4.1 门极可关断晶闸管 门极可关断晶闸管(Gate-Turn-Off Thyri
21、stor GTO) 晶闸管的一种派生器件。 可以通过在门极施加负的脉冲电流使其关断。 GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用。 DATASHEET1)GTO的结构和工作原理 结构: 与普通晶闸管的相同点: PNPN四层半导体结构,外部引出阳极、阴极和门极。 和普通晶闸管的不同点:GTO是一种多元的功率集成器件 工作原理: 与普通晶闸管一样,可以用图1-7所示的双晶体管模型来分析。 由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极电流增益a1和a2 。a1+a2=1是器件临界导通的条件 GTO能够通过门极关断的原因是其与普通晶
22、闸管有如下区别: 设计a2较大,使晶体管V2控 制灵敏,易于GTO。 导通时a1+a2更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。 多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。 设计a2较大,使晶体管V2控 制灵敏,易于GTO。 导通时a1+a2更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。 多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。 由上述分析我们可以得到以下结论: GTO导通过程与普通晶闸管一样,只是导通时饱和程度较浅。 GTO关断过程中有强烈正反馈使器件退出饱和而关断。 多元集成结构还使GTO比普通晶闸管
23、开通过程快,承受di/dt能力强 2)GTO的动态特性 开通过程:与普通晶闸管相同 关断过程:与普通晶闸管有所不同 储存时间ts,使等效晶体管退出饱和。 下降时间tf 尾部时间tt 残存载流子复合。 通常tf比ts小得多,而tt比ts要长。 门极负脉冲电流幅值越大,ts越短。Ot0tiGiAIA90%IA10%IAtttftstdtrt0t1t2t3t4t5t6图1-14 GTO的开通和关断过程电流波形3)GTO的主要参数许多参数和普通晶闸管相应的参数意义相同,以下只介绍意义不同的参数。(1)开通时间ton 延迟时间与上升时间之和。延迟时间一般约12ms,上升时间则随通态阳极电流的增大而增大。
24、(2) 关断时间toff 一般指储存时间和下降时间之和,不包括尾部时间。下降时间一般小于2ms。 不少GTO都制造成逆导型,类似于逆导晶闸管,需承受反压时,应和电力二极管串联 。(3)最大可关断阳极电流IATOGTO额定电流(4) 电流关断增益boff最大可关断阳极电流与门极负脉冲电流最大值IGM之比称为电流关断增益。(1-8)boff一般很小,只有5左右,这是GTO的一个主要缺点。1000A的GTO关断时门极负脉冲电流峰值要200A 。 1.4.2 电力晶体管术语用法: 电力晶体管(Giant TransistorGTR,直译为巨型晶体管) 。 耐高电压、大电流的双极结型晶体管(Bipola
25、r Junction TransistorBJT),英文有时候也称为Power BJT。 DATASHEET 1 2 应用 20世纪80年代以来,在中、小功率范围内取代晶闸管,但目前又大多被IGBT和电力MOSFET取代。1)GTR的结构和工作原理 与普通的双极结型晶体管基本原理是一样的。 主要特性是耐压高、电流大、开关特性好。 通常采用至少由两个晶体管按达林顿接法组成的单元结构。 采用集成电路工艺将许多这种单元并联而成 。 在应用中,GTR一般采用共发射极接法。 集电极电流ic与基极电流ib之比为(1-9) b GTR的电流放大系数,反映了基极电流对集电极电流的控制能力 。 当考虑到集电极和
26、发射极间的漏电流Iceo时,ic和ib的关系为 ic=b ib +Iceo (1-10) 单管GTR的b 值比小功率的晶体管小得多,通常为10左右,采用达林顿接法可有效增大电流增益。2)GTR的基本特性(1) 静态特性 共发射极接法时的典型输出特性:截止区、放大区和饱和区。 在电力电子电路中GTR工作在开关状态。 在开关过程中,即在截止区和饱和区之间过渡时,要经过放大区。截止区放大区饱和区OIcib3ib2ib1ib1ib2 BUcex BUces BUcer Buceo。 实际使用时,最高工作电压要比BUceo低得多。2)集电极最大允许电流IcM 通常规定为hFE下降到规定值的1/21/3时
27、所对应的Ic 。 实际使用时要留有裕量,只能用到IcM的一半或稍多一点。 3) 集电极最大耗散功率PcM 最高工作温度下允许的耗散功率。 产品说明书中给PcM时同时给出壳温TC,间接表示了最高工作温度 。 4) GTR的二次击穿现象与安全工作区 一次击穿:集电极电压升高至击穿电压时,Ic迅速增大。 只要Ic不超过限度,GTR一般不会损坏,工作特性也不变。 二次击穿:一次击穿发生时,Ic突然急剧上升,电压陡然下降。 常常立即导致器件的永久损坏,或者工作特性明显衰变 。 安全工作区(Safe Operating AreaSOA) 最高电压UceM、集电极最大电流IcM、最大耗散功率PcM、二次击穿
28、临界线限定1.4.3 电力场效应晶体管电力场效应晶体管 分为结型和绝缘栅型 通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET) 简称电力MOSFET(Power MOSFET) 结型电力场效应晶体管一般称作静电感应晶体管(Static Induction TransistorSIT) 特点用栅极电压来控制漏极电流 驱动电路简单,需要的驱动功率小。 开关速度快,工作频率高。 热稳定性优于GTR。 电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置 。1)电力MOSFET的结构和工作原理 电力MOSFET的种类 按导电沟道可分为P沟道和N沟道
29、。 耗尽型当栅极电压为零时漏源极之间就存在导电沟道。 增强型对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道。 电力MOSFET主要是N沟道增强型。 DATASHEET 电力MOSFET的结构 是单极型晶体管。 导电机理与小功率MOS管相同,但结构上有较大区别。 采用多元集成结构,不同的生产厂家采用了不同设计。 电力MOSFET的结构 小功率MOS管是横向导电器件。 电力MOSFET大都采用垂直导电结构,又称为VMOSFET(Vertical MOSFET)。 按垂直导电结构的差异,分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(Ver
30、tical Double-diffused MOSFET)。 这里主要以VDMOS器件为例进行讨论。 电力MOSFET的工作原理 截止:漏源极间加正电源,栅源极间电压为零。 P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。 导电:在栅源极间加正电压UGS 当UGS大于UT时,P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电 。2)电力MOSFET的基本特性(1) 静态特性 漏极电流ID和栅源间电压UGS的关系称为MOSFET的转移特性。 ID较大时,ID与UGS的关系近似线性,曲线的斜率定义为跨导Gfs。 MOSFET的漏极伏安特性: 截止
31、区(对应于GTR的截止区) 饱和区(对应于GTR的放大区) 非饱和区(对应GTR的饱和区) 工作在开关状态,即在截止区和非饱和区之间来回转换。 漏源极之间有寄生二极管,漏源极间加反向电压时器件导通。 通态电阻具有正温度系数,对器件并联时的均流有利。(2) 动态特性 开通过程 开通延迟时间td(on) 上升时间tr 开通时间ton开通延迟时间与上升时间之和 关断过程 关断延迟时间td(off) 下降时间tf 关断时间toff关断延迟时间和下降时间之和 MOSFET的开关速度 MOSFET的开关速度和Cin充放电有很大关系。 可降低驱动电路内阻Rs减小时间常数,加快开关速度。 不存在少子储存效应,
32、关断过程非常迅速。 开关时间在10100ns之间,工作频率可达100kHz以上,是主要电力电子器件中最高的。 场控器件,静态时几乎不需输入电流。但在开关过程中需对输入电容充放电,仍需一定的驱动功率。 开关频率越高,所需要的驱动功率越大。3) 电力MOSFET的主要参数 除跨导Gfs、开启电压UT以及td(on)、tr、td(off)和tf之外还有: (1)漏极电压UDS 电力MOSFET电压定额(2)漏极直流电流ID和漏极脉冲电流幅值IDM电力MOSFET电流定额(3) 栅源电压UGS UGS20V将导致绝缘层击穿 。 (4)极间电容极间电容CGS、CGD和CDS1.4.4 绝缘栅双极晶体管
33、GTR和GTO的特点双极型,电流驱动,有电导调制效应,通流能力很强,开关速度较低,所需驱动功率大,驱动电路复杂。 MOSFET的优点单极型,电压驱动,开关速度快,输入阻抗高,热稳定性好,所需驱动功率小而且驱动电路简单。 两类器件取长补短结合而成的复合器件Bi-MOS器件 绝缘栅双极晶体管(Insulated-gate Bipolar TransistorIGBT或IGT)(DATASHEET 1 2 ) GTR和MOSFET复合,结合二者的优点。 1986年投入市场,是中小功率电力电子设备的主导器件。 继续提高电压和电流容量,以期再取代GTO的地位。1) IGBT的结构和工作原理 三端器件:栅
34、极G、集电极C和发射极E IGBT的结构 图1-22aN沟道VDMOSFET与GTR组合N沟道IGBT。 IGBT比VDMOSFET多一层P+注入区,具有很强的通流能力。 简化等效电路表明,IGBT是GTR与MOSFET组成的达林顿结构,一个由MOSFET驱动的厚基区PNP晶体管。 RN为晶体管基区内的调制电阻。 IGBT的原理1.4.4 绝缘栅双极晶体管 驱动原理与电力MOSFET基本相同,场控器件,通断由栅射极电压uGE决定。 导通:uGE大于开启电压UGE(th)时,MOSFET内形成沟道,为晶体管提供基极电流,IGBT导通。 通态压降:电导调制效应使电阻RN减小,使通态压降减小。 关断
35、:栅射极间施加反压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,IGBT关断。2) IGBT的基本特性 (1)IGBT的静态特性O有源区正向阻断区饱和区反向阻断区ICUGE(th)UGEOICURMUFMUCEUGE(th)UGE增加图1-23 IGBT的转移特性和输出特性a) 转移特性 b) 输出特性(2)IGBT的动态特性 IGBT的开通过程 与MOSFET的相似 开通延迟时间td(on) 电流上升时间tr 开通时间ton uCE的下降过程分为tfv1和tfv2两段。 tfv1IGBT中MOSFET单独工作的电压下降过程; tfv2MOSFET和PNP晶体管同时工作的电压
36、下降过程。 IGBT的关断过程 关断延迟时间td(off) 电流下降时间 关断时间toff 电流下降时间又可分为tfi1和tfi2两段。 tfi1IGBT器件内部的MOSFET的关断过程,iC下降较快。 tfi2IGBT内部的PNP晶体管的关断过程,iC下降较慢。ttt10%90%10%90%UCEIC0O0UGEUGEMICMUCEMtfv1tfv2tofftontfi1tfi2td(off)tftd(on)trUCE(on)UGEMUGEMICMICM图1-24 IGBT的开关过程 3) IGBT的主要参数(1) 最大集射极间电压UCES由内部PNP晶体管的击穿电压确定。(2) 最大集电极
37、电流包括额定直流电流IC和1ms脉宽最大电流ICP 。 (3) 最大集电极功耗PCM正常工作温度下允许的最大功耗 。 IGBT的特性和参数特点可以总结如下: 开关速度高,开关损耗小。 相同电压和电流定额时,安全工作区比GTR大,且 具有耐脉冲电流冲击能力。 通态压降比VDMOSFET低。 输入阻抗高,输入特性与MOSFET类似。 与MOSFET和GTR相比,耐压和通流能力还可以进一步提高,同时保持开关频率高的特点 。 擎住效应或自锁效应:NPN晶体管基极与发射极之间存在体区短路电阻,P形体区的横向空穴电流会在该电阻上产生压降,相当于对J3结施加正偏压,一旦J3开通,栅极就会失去对集电极电流的控
38、制作用,电流失控。 动态擎住效应比静态擎住效应所允许的集电极电流小。 擎住效应曾限制IGBT电流容量提高,20世纪90年代中后期开始逐渐解决。 正偏安全工作区(FBSOA)最大集电极电流、最大集射极间电压和最大集电极功耗确定。 反向偏置安全工作区(RBSOA)最大集电极电流、最大集射极间电压和最大允许电压上升率duCE/dt确定。 IGBT往往与反并联的快速二极管封装在一起,制成模块,成为逆导器件 。1.5.1 MOS控制晶闸管MCT MCT(MOS Controlled Thyristor)MOSFET与晶闸管的复合(DATASHEET) MCT结合了二者的优点: 承受极高di/dt和du/
39、dt,快速的开关过程,开关损耗小。 高电压,大电流、高载流密度,低导通压降。 一个MCT器件由数以万计的MCT元组成。 每个元的组成为:一个PNPN晶闸管,一个控制该晶闸管开通的MOSFET,和一个控制该晶闸管关断的MOSFET。 其关键技术问题没有大的突破,电压和电流容量都远未达到预期的数值,未能投入实际应用。1.5.2 静电感应晶体管SITSIT(Static Induction Transistor)结型场效应晶体管 多子导电的器件,工作频率与电力MOSFET相当,甚至更高,功率容量更大,因而适用于高频大功率场合。 在雷达通信设备、超声波功率放大、脉冲功率放大和高频感应加热等领域获得应用。缺点: 栅极不加信号时导通,加负偏压时关断,称为正常导通型器件,使用不太方便。 通态电阻较大,通态损耗也大,因而还未在大多数电力电子设备中得到广泛应用。1.5.3 静电感应晶闸管SITHSITH(Static
限制150内